
The Process of Metadata Modeling in Industrial Data

Warehouse Environments

Claudio Jossen, Klaus R. Dittrich

Database Technology Research Group

Department of Informatics

University of Zurich

CH-8050 Zurich

jossen@ifi.unizh.ch

dittrich@ifi.unizh.ch

Abstract: Modern application landscapes and especially huge enterprise

applications, like data warehouses, used for decision support or other analyzing

purposes get more and more complex. To manage, use and maintain these systems

the need for metadata management has increased. In consequence of new tasks

being identified by new groups of data warehouse users, the role of metadata

management implies more than simply surf data schemas. It becomes necessary

that metadata systems integrate different kinds of metadata and offer different

views on the metadata as well. In this paper we discuss the process of identifying

metadata model requirements, defining a new metadata model and finally

implementing it in a metadata schema. The process is illustrated by a possible

metadata model and schema, which were developed to meet the requirements of a

complex data warehouse environment in Helsana Versicherungen AG, the largest

Swiss insurance company. The paper describes the implementation of the metadata

model based on the metadata standards Resource Description Framework (RDF)

and RDF Schema (RDFS). The presented model and schema are just one possible

solution and are not leading to a universal metadata model. The goal of this paper

is to discuss the process of metadata modeling and to help metadata architects to

develop their own metadata models and schemas.

1 Introduction

Data warehousing (DWH) has become a very important part of large companies’

application landscape. The group of DWH application users is no longer restricted to the

management or a few power users and data architects who know data schemata and data

flows very well. Under the label of Business Intelligence (BI), there are now many types

of applications using data warehouse technology to fulfill the needs of very different

kinds of users. Modern data warehouses belong to the group of most important

enterprise-wide technologies, like enterprise application integration (EAI) or enterprise

information integration (EII). In fact, they are realizing some aspects of data integration

especially in the field of expert systems and Decision Support Systems (DSS).

To keep such complex and large systems manageable for professionals and allow end-

users to learn about the company’s data flows and structures, the provision of a metadata

management system is the best way. This obviously requires a metadata model.

However, there is currently none available covering all needs of possible metadata

applications. Standardized metadata models defined by groups of companies exist, but

they can not contain all possible kinds of metadata another company may require. In this

paper a metadata model is a set of elements, which are needed to describe a metadata

schema. A metadata schema is a possible implementation of a metadata model.

This paper shows the process of creating a metadata model by following the principles of

keeping a model as small and simple as possible and to include only as much complexity

and functionality as needed. The goal of this paper is not to show a new metadata model

that is applicable to any DWH environment. It just describes the way of metadata

modeling and one possible solution depending on a company’s requirements. Creating a

metadata model and using it for the design of metadata schemas should be as adaptable

to different metadata as it is to create a relational data schema for different kinds of data

processing applications using the relational model.

In the field of metadata representation and modeling there are several metadata formats

developed by different people from the research community as well as from industry

[Vad01]. In the data warehouse field there are two main metadata standards: The

common warehouse model (CWM) [Vet00] and the Resource Description Framework

(RDF). CWM [Cw03] is part of the Object Management Group’s standard family related

to the Unified Modeling Language (UML) [Omg02] and is dedicated to the needs of

metadata modeling in data warehouses.

A more generally used metadata standard is RDF
1
 which is used as a metadata model in

very different areas ([Sto05] is an example). In fact, not RDF itself is used to model

metadata, but dialects based on the RDF/XML syntax [Tho06]. RDF is the basic

standard for other semantic web metadata standards which are built on top of it: RDF

Schema (RDFS) and the Web Ontology Language (OWL)
2
.

Originally, there has been a third well known standard, Open Information Model (OIM).

It was developed by the Meta Data Coalition (MDC), but in 2000 they joined the OMG

and supported CWM as their standard.

1 See http://www.w3.org/RDF/ for a description of the standard and its related technologies
2 See http://www.w3.org/2004/OWL/ for the detailed standard

We decided to use our own RDF dialect instead of CWM because we do not cover some

mandatory parts of CWM but need some additional aspects
3
. This means basically, that

the MDMS will store not only data warehouse metadata but also metadata like interface

descriptions (out of WSDL documents), business term definitions and their relations etc.

Additionally we require a query language to access our data in different ways. The

World Wide Web Consortium (W3C) has defined such a standard for querying RDF:

SPARQL. SPARQL becomes more and more supported by RDF-supporting Frameworks

and is really easy to understand because of its SQL-like syntax
4
.

2 Metadata model requirements in a data warehouse environment

The use of data warehouses can be regarded as a kind of enterprise data integration,

although some differences to other approaches of integration exist. Currently, most data

warehouses are neither filled with just-in-time enterprise data nor offer application

interfaces or services for the use with operational systems. At the same time most of the

current reporting applications or front end tools of data warehouses are not full portal

applications and not even deployable to a portal system. It is foreseeable that portal

system manufactures will change this in the near future. However, this will not change

the fact that data warehouses are not a full replacement for an enterprise information

integration portal, although data warehouses are becoming more and more important

parts of such systems.

In the field of BI and data warehousing, there are three main areas of interest if we

follow the data flow from the data sources to the reporting tools data warehouse users

work with. The first and oldest area of interest is the part of a data warehouse which

normally covers the processes of data extraction, transformation and load into the

data warehouse database (ETL). This part of a data warehouses is still the most complex

one and gets the focus of most data warehouse projects at least during the development

phase.

3 There are case studies from the University of St. Gallen together with some huge Swiss companies like UBS,

that described this problem [Mau03]. They also mentioned the lack of CWM suppporting metadata tools in the

data warehousing area.
4 For a list of frameworks and applications using SPARQL see: http://esw.w3.org/topic/SparqlImplementations

There are some documents showing how widely accepted SPARQL is by now. For the description of the

standard see http://www.w3.org/2001/sw/DataAccess/

The second area of interest in a data warehouse is now state-of-the-art and became

necessary with the growing number of data warehouse users, especially with people

joining this group, who are not expected to have deeper knowledge of data warehouses.

They normally use standard reports or few ad hoc reports which are established by

power users. This part of a data warehouse is sometimes even called BI but basically it

covers all kinds of reporting tools querying a data warehouse, analyzing the results and

delivering them to the requesting user. In the literature this group of applications/tools is

called reporting systems [Mar04] or end user access (EUA). From a more technical

point of view, this part of a data warehouse is also defined as a data mart. A data mart is

basically a component of a DWH which can be used for querying a defined subset of all

DWH data and for data mining [Riz06]. These subsets can be physically extracted and

do not need to be disjoint.

The third area of interest is the newest and currently rarely implemented part of a data

warehouse: metadata management. It became necessary with data warehouse

environments getting more complex and the growing number of data, which is available

through data warehouses to users, which do not know, where the data comes from. To

work with this data the users need appropriate descriptions and additional knowledge

about the data. Normally this “data about data” (basic definition of metadata) answer

different kinds of questions like:

• Where does data come from? Where does data belong to? (Q1)

• How is data transformed, calculated, aggregated, etc.? (Q2)

• What meaning do data have? (Q3)

There are many more questions [Tan01] which show the need of metadata and the need

of processes to collect them, to organize them and to provision them to data warehouse

users. This is basically what metadata management is about, but this paper is limited to

answer the three questions mentioned above (Q1, Q2 and Q3) because they are the most

important, fundamental and in some cases needed ones to answer further questions.

Their answers allow the development of a full metadata management as it is shown in

the following chapters.

The approach discussed in this paper has been implemented as the so-called Metadata

Management System (MDMS) in the largest Swiss insurance company, Helsana

Versicherungen AG. It is now a productive information system running in the company

for about two years with a still growing number of users.

3 Metadata Modelling

This chapter discusses the different kinds of metadata which have to be modelled in

MDMS and how metadata standards are used.

The attempt to answer the questions Q1, Q2 and Q3 leads to three possible dimensions

of metadata. The first one is the level of detail of metadata. In the data warehouse field

this basically covers the position in a data model, for instance, metadata can be about a

whole table or just about a single column. This dimension is where the answers to the

first question are located.

The second dimension is the position of metadata in the data flow. This is not only

meant as a physical position but also as the level of change of the corresponding data,

due to calculation or aggregation, for instance. Obviously this dimension contains the

answers to the second question.

The third dimension is less technical than the other two and introduces a semantic layer

into our approach. The level of abstraction shows which metadata belong together by

content but not by physical location or use in an information system. This dimension

does not fully answer the third question (Q3). The fact of connecting metadata is the first

step towards a broad and perhaps unstructured description of metadata. Adding

unstructured metadata to the MDMS metadata model is not possible currently.

These three dimensions show that there are many possible solutions in metadata

modeling. As mentioned in the first chapter, the decision was taken to use RDF as basic

metadata model. RDF, together with its extension RDFS, offer the opportunity to create

a possible metadata model covering the three dimensions.

RDF is based on triple-statements with the structure {Subject, Predicate, Object}. A

subject is a resource like a webpage or a column in a data model. The object is an

attribute of the subject it belongs to, a webpage’s paragraph or a column’s definition, for

instance. The kind of relationship that connects an object to a subject is defined by the

predicate. The most used kind of relationship is just parent vs. child node which could

be modelled as a tree as known from XML. In our approach, this is basically used for

representing data models which are hierarchically organized. As we mentioned before,

the representation and the navigation through data model is addressed by the first

dimension of metadata concerning the level of detail.

If more than one tree is based on several data model representations, a way to connect

them to each other or to say it more general to link resources to each other is needed.

RDF offers the opportunity to link two resources together by using another predicate

which defines the object of the statement to be a resource as well (rdf:resource). This can

also be used to link elements of the same graph together, for instance, a child with one of

its ancestors. With this feature of RDF we can model the data flow between the different

data models and so realize our second dimension.

To add an object-oriented point of view to a set of RDF statements RDFS is needed.

RDFS offers predicates to define resources as classes and also as class instances

(rdf:class and rdf:type). This mechanism realizes the third dimension, the level of

abstraction.

4 Implementation of the MDMS metadata model

This chapter describes the metadata schema of MDMS built using its metadata model

and gives a short overview of its implementation.

Model

Entity Level 0

Entity Level 1

Entity Level 2

Entity Level 3Model

Subject Area

Entity

Attribute

Model

Subject Area

Entity

Attribute

Model

Subject Area

Entity

Attribute

Model

Subject Area

Entity

Attribute

Dimension 2: Data Flow

D
im

e
n

s
io

n
 1

:
D

a
ta

 H
ie

ra
rc

h
y

Dimension 3: Abstraction

Model

Subject Area

Entity

Attribute

Example of ETL Relation

Example of ETL Relation

Example of Abstraction Relation

Example of Data Flow

Example of Abstraction Relation

Sources

Data Warehouse Reporting

Enterprise Information Model

Figure 1: Data Dimensions in MDMS

The MDMS metadata schema basically contains data schemas from productive databases

of Helsana. It makes no difference between data warehouse databases and databases

from outside the data warehouse (source databases). There are basically two types of

data schemas stored in the MDMS: data schemas and a high-level information entity

schema, covering the whole company (Enterprise Information Model). The navigation

through metadata inside of the data schemas and the Enterprise Information Model

schema is basically a solution of the first dimension described in the last chapter. The

links between all data schemas span the second dimension and the connection of entities

from data schemas and entities of the Enterprise Information Model schema realizes the

third dimension.

Figure 1 shows how the three metadata dimensions are implemented in the MDMS
5
. The

core of a data schema is built by four basic types of resources: Model, Subject Area,

Entity or Table and Attribute or Column. Basically each data schema has a logical view

(Model, Subject Area, Entity, Attribute) and a physical view (model, Subject Area,

Table, Column). Figure 1 uses the logical terms to represent a data schema. There are

some more elements, which are missing in the figure, to make it better readable. Real

schemas contain many more resources like datatype domains.

Listing 1 is a short sample of the RDF representation of an entity in a data schema. The

data hierarchy is basically done with RDF lists. They could easily be replaced by named

links like the ParentAttribute tag, which represents a foreign key relationship. Another

special relationship is implemented by the Code tag. In Helsana Code values are

maintained directly in the corresponding database systems and they change faster then

the data schemas they belong to. This caused the MDMS project to integrated metadata

from outside the MDMS, which never become stored in the MDMS repository. The only

way to get them is a SQL-query on the related database system. This was done by

storing groups of SQL-queries (code templates) in the MDMS repository itself and

implementing a post-processor of each SeRQL
6
 / SPARQL

7
 query, which runs against

the MDMS. This post-processor replaces the RDF data about SQL and the

corresponding database (Listing 2) by the current values from the database system and

transform them into RDF, too. This is a very simple way of integrating data from a

relational database system into an RDF/XML-based repository.

5 To separate the three dimensions, MDMS uses three different XML namespaces which are named based on

the tools the metadata come from or where they were collected, for instance by re-engineering:

http://www.helsana.ch/mdm/mdmERwin#, http://www.helsana.ch/mdm/mdmETL# and

http://www.helsana.ch/mdm/mdmInfo#.
6 The Sesame RDF Query Language (SeRQL) together with SPARQL are the supported query languages of

Sesame, the RDFS framework the MDMS uses to store RDF data.
7 See http://www.w3.org/2001/sw/DataAccess/ for more details on the standard

<rdf:Description rdf:about=http://www.helsana.ch/mdm/models/BDWH>

 <rdf:li>

 <rdf:Description rdf:about=http://www.helsana.ch/mdm/entities/adr>

 <rdf:li>

 <rdf:Description rdf:about=http://www.helsana.ch/mdm/attributes/adr/sprache_c>

 <mdmErwin:ParentAttribute rdf:resource=http://www.helsana.ch/mdm/attributes/adr_typ/sprache_c/>

 <mdmERwin:Code rdf:resource=http://www.helsana.ch/mdm/code_templates/bdwh/sprache_c/>

 </rdf:Description>

 </rdf:li>

 …

 </rdf:Description>

 </rdf:li>

 …

</rdf:Description>

Listing 1

As long as the MDMS does not require more advanced metadata integration, there is no

reason to change this, but otherwise there exists software-bridges and mapping

languages to cross the gap between the relational and the RDF/XML world like R2O

[Bar04], for instance, that are much more powerful.

The data flow is represented by relations between attributes or columns in the various

data schemas and basically models what happens in a data warehouse. Because a data

warehouse environment normally contains most of the analytical databases and most of

the transactional or real-time productive databases as well, the MDMS metadata schema

covers most or all databases used in the company.

The data transformations in the data flow are modeled like in Listing 3. Each

transformation contains at least one step and each step might have several sources and

targets. Steps have an order an obviously the target of a non-final step has to be a source

of its following step. The sum of all transformations between two data schemas is their

mapping. There are data schemas in the MDMS with several mappings from different

source data schemas and it is really easy to add some more even incomplete mappings.

The MDMS defined five types of data transformation, which are used in the Helsana

DWH environment by now:

• L: Lookup

• C: Case

• B: Calculation

• S: Standard

• G: Generated

Of course there is some more information stored in the MDMS on how the

transformations are done in detail, for instance the different cases of a case

transformation. Some of the information is some generated automatically from the ETL

tool some become entered manually. This is necessary because of the heavy use of SQL-

Queries instead of standard mechanisms in ETL-jobs.

<rdf:Description rdf:about=http://www.helsana.ch/mdm/code_templates/bdwh/sprache_c>

 <mdmERwin:Database>teradata</mdmERwin:Database>

 <mdmERwin:Query>Select sprache.qs_id, qs.qs_kbez_x, …</mdmERwin:Query>

</rdf:Description>

Listing 2

Entities from data schemas can be connected to a corresponding entity in the enterprise

information model. The entities in the information model schema itself are on different

levels of aggregation (Level 0 to Level 3, with Level 0 being the highest level of

abstraction), so here again appears the dimension of data hierarchy as in all other data

schemas.

Listing 4 shows the way entities from data schemas are linked to the Enterprise

Information Model of Helsana. This is done by the standard tags of RDFS. The use of

RDFS allows the MDMS to use inferencing for physical aggregation of data schema

elements. Any other aggregation can be easily done by writing appropriate queries in

SeRQL or SPARQL.

Because there is only one global metadata schema in the MDMS there is no need of

using ontology matching and OWL. The metadata integration mapping is simple and

very limited because of importing database schemas from one single tool.

<rdf:Description rdf:about=http://www.helsana.ch/mdm/entities/InfoModel/Adresse>

 <mdmInfo:Definition>Die Adresse eines Partners…</mdmInfo:Definition>

 <rdfs:SubClassOf rdf:resource= http://www.helsana.ch/mdm/entities/InfoModel/Partner>

</rdf:Description>

<rdf:Description rdf:about=http://www.helsana.ch/mdm/entities/adr>

 <rdfs:type rdf:resource= http://www.helsana.ch/mdm/entities/InfoModel/Adresse>

</rdf:Description>

<rdf:Description rdf:about=http://www.helsana.ch/mdm/transformations/SourceDB1001>

 <mdmETL:Type>S</mdmETL:Type>

 <mdmETL:Step rdf:resource=http://www.helsana.ch/mdm/steps/SourceDB1001_1>

 …

</rdf:Description>

<rdf:Description rdf:about=http://www.helsana.ch/mdm/steps/SourceDB1001_1>

 <mdmETL:Source rdf:resource=http://www.helsana.ch/mdm/attributes/T_D H_RECH/sender_ean/>

 <mdmETL:Source rdf:resource=http://www.helsana.ch/mdm/attributes/T_DH_RECHPOS/ean_responsible/>

 <mdmETL:Target rdf:resource=http://www.helsana.ch/mdm/attributes/ean/ean/>

</rdf:Description>

Listing 3

Listing 4

The data modeling application which is mainly used in Helsana is CA’s All Fusion

ERwin. This tool has an interface for exporting XML files in the OMG XMI standard.

Although the data schemas are then written in a standard metadata format, the

implementation of XMI (the schema) is still related to Erwin. The next step is to

translate the exported XMI files with XML Schema Transformation (XSLT) into RDF,

which has to be done by a Rich Client Application called Local Model Manager. The

Local Model Manager checks and solves some dependencies with other schemas and

then stores the transformed schema into a standard relational database (Microsoft SQL

Server). This is done by a Java framework called Sesame
8
, which supports RDF and

RDFS. Sesame has been chosen because of its better performance running in the Helsana

database environment compared to the better known Jena framework from HP Labs
9
.

Possible reasons might be the heavy use of varchar fields in the database Schema of Jena

and the huge amount of joints on the very same table (Jena stores each RDF schema in a

new table) that some of the MDMS queries caused on the underlying relational

databases.

Data Modelling Application

MDMS User
Web Service Container

Relational Database Java Web Container

Local Model Manager

XMI files

SOAP

SOAP HTTPSeRQL / SPARQL

Figure 2: MDMS Architecture

The Sesame RDFS interfaces are used by Web Services running in a Web Service

Container (Apache Axis2) on a Java Web Application Server (Apache Tomcat 5.5).

Beside this, a web application offers a web frontend to the users of the MDMS by calling

the same web services as the Local Model Manager.

The metadata MDMS supports so far are more or less well-structured data models and

their relation to each other. The MDMS also offers the opportunity to store additional

comments provided by users. This is still structured content by the way it can be entered

(pre-defined text areas with descriptions about possible content) and by the way it is

stored (pre-defined tags and relations).

8 See http://www.openrdf.org for more details
9 See http://jena.sourceforge.net for more details

To evolve MDMS from a system that just offers content created and managed by other

applications, towards a knowledge management system with its own content created and

maintained by its users, the system needs the possibility to store unstructured content
10

as well. This could be done for instance by adding support for WebDAV [Scha06] or

another technology supporting the management of documents combined with the storage

of metadata. Our vision is basically to expand the existing MDMS with some kind of

Wiki application, which uses Semantic Web technologies to store its content [Buf06].

As metadata models are getting more complex over time and the amount of relations

between them grow, too, the need of appropriate model operators [Mel03] is getting

more and more urgent. These operators have been defined in another interesting research

area called Generic Model Management and will help to separate sets of metadata for

instance, or allowing us to implement operations like insert, delete and update that are

very well established in relation databases but not yet in RDF repositories.

5 Conclusion and Further Work

This paper showed how to define a new metadata model using RDF and RDFS for a data

warehouse environment that fulfills the needs of an industrial setting and how it has been

implemented in the application landscape of Helsana. Although this is now a fully

functional and widely accepted application solution in the company itself, there are still

some points left where MDMS could be expanded and enriched to support more

metadata needs.

The final goal to be reached through future development of MDMS is the combination of

application metadata with database metadata. This will help us to offer information

about which data were accessed or changed by which process. We hope to realize this

with the extraction of application metadata from web service descriptions and additional

documentation provided by software developers.

References

[Bar04] Barrasa J.; Corcho O.; Gómez-Pérez A.: R2O, an Extensible and Semantically Based

Database-to-Ontology Mapping Language. Second Workshop on Semantic Web and

Databases (SWDB2004). Toronto, Canada. August 2004

[Buf06] Buffa, M.; Gandon, F.: SweetWiki: Semantic Web Enabled Technologies in Wiki.

Proceedings of the 2006 international symposium on Wikis WikiSym '06; ACM Press;

Aug. 2006

[Cw03] Object Management Group (OMG): Common Warehouse Metamodel (CWM)

Specification, Version 1.1, Volume 1; http://www.omg.org, Mar. 2003

 [Mar04] Marco, D.; Jennings, M.: Universal Meta Data Models. John Wiley and Sons; Wiley

Publishing, Inc., 2004

10 In this context unstructured content means plain text from technical documents, business term definitions,

user comments, etc.

[Mau03] Von Maur E.; Winter R.: Data Warehouse Management – Das St. Galler Konzept zur

ganzheitlichen Gestaltung der Informationslogistik; Springer 2003

[Mel03] Melnik, S.; Rahm, E.; Bernstein, P.: Rondo: A Programming Platform for Generic Model

Management. Proceedings of the 2003 ACM SIGMOD international conference on

Management of data; ACM Press, Jun. 2003

[Omg02] Object Management Group (OMG): Meta Object Facility (MOF) Specification. Version

1.4; http://www.omg.org, Apr. 2002

[Riz06] Rizzi, S.; Lechtenbörger, J.; Abelló, A.; Trujillo, J.: Research in Data Warehouse

Modeling and Design: Dead or Alive?. Proceedings of the 9th ACM international

workshop on Data warehousing and OLAP DOLAP '06, ACM Press, Nov. 2006

[Scha06] Schandl, B.; King, R.: The SemDAV Project: Metadata Management for Unstructured

Content. Proceedings of the 1st international workshop on Contextualized attention

metadata: collecting, managing and exploiting of rich usage information; ACM Press,

Nov. 2006

[Sto05] Stock, I.; Weber, M.; Steinmeier, E.: Document authoring, production and management:

Metadata based authoring for technical documentation. Proceedings of the 23rd annual

international conference on Design of communication: documenting & designing for

pervasive information SIGDOC '05; ACM Press; Sept. 2005

[Tan01] Tannenbaum, A.: Metadata Solutions – Using Metamodels, Repositories, XML and

Enterprise Portals to Generate Information on Demand. Addison-Wesley, Pearson

Education; 2001

[Tho06] Thomsen, C; Pedersen, T.: Data Warehouse Construction: Building a Web Warehouse

for Accessibility Data. Proceedings of the 9th ACM international workshop on Data

warehousing and OLAP DOLAP '06, ACM Press; Nov. 2006

[Vad01] Vaduva, A.; Vetterli, T.: Metadata Management for Data Warehousing: An Overview.

Intl. Journal of Cooperative Information Systems (IJCIS), Vol. 10, No. 3, 2001, p. 273-

298

[Vet00] Vetterli, T; Vaduva, A.; Staudt, M.: Metadata Standards for Data Warehousing: Open

Information Model vs. Common Warehouse Metamodel. ACM Sigmod Record, 29(3);

Sept. 2000

