A Flexible Architecture for a Push-based P2P Database

Cristian Pérez de Laborda and Christopher Popfinger

Institute of Computer Science
Heinrich-Heine-Universitat Disseldorf
D-40225 Diisseldorf, Germany
{perezdel, popfinger }@cs.uni-duesseldorf.de

Abstract

Originally developed for file sharing, P2P concepts are predestinated to realize infor-
mation sharing in a more general way. Combined with the well known concept of loosely
coupled multidatabases they provide a promising fundament for sharing data and metadata
across autonomous and heterogenous data sources. The DIGAME architecture allows each
participating data source to decide autonomously, which kind of information to share. Data
and schema updates on these shares are propagated actively to subscribing peers, without
having to be managed by a central authority. Each peer is now able to maintain a replica of
all the data demanded locally, regardless of where the data is stored originally. In this con-
text we have identified several link patterns, indispensable for understanding and designing
an information grid.

1 Motivation

Accessing data across various autonomous and heterogenous data sources is still a challenge
to be taken. Especially global corporations possess a large amount of databases, often spread
over different regions or countries. These local databases typically raised in an autonomous and
independent manner, fitting the special needs of the users at the local site. The design of the
databases and the functionalities provided, intend to fulfil the aims of the departments. This
leads to logical and physical differences in the databases concerning data formats, concurrency
control, the data manipulation language or the data model [9]. An information system is required
to integrate the information of these heterogeneous data sources to provide a global access.

In this paper we introduce the vision of the DIGAME architecture, a Dynamic Information
Grid in an Active Multidatabase Environment, which actively propagates data and schema
updates over import/export-components between dynamically connectable data peers. This
architecture offers a flexible and fail-safe information platform based on the data policies in
organisations achieving a feasible trade-off between local autonomy and a reasonable degree of
information sharing.

In section 2 we start describing the basic functionality of our architecture, followed by a
discussion of each component. The most relevant patterns for linking the collaborating peers
are given in section 3. Section 4 discusses related work and section 5 concludes and draws up
future work.

2 DicAME Architecture
2.1 Concept

In this section we introduce the basic functionality of the DIGAME architecture, which allows
the dynamic connection of data sources without restricting their local autonomy in order to
share selected information. This union is based on Peer—to—Peer (P2P) concepts and operates
without any central administrative instance.

The administrator of each peer makes a subset of its data accessible. Other peers are
now able to integrate this data into their local databases, subscribing to a specific part of
the data provided. Thereupon updates are propagated automatically to the subscribers by
the data source, including both, data and schema modifications. Of course data may also be
actively requested by the subscribers, as done while subscribing to a new data share or after a
transmission failure, e.g. a network breakdown. Each data source of this dynamic information
grid is herewith able to maintain an up—to—date replica of the required data and schema items.
As there is no general rule for the integration of the replicated data, it has to be integrated
individually by the administrator of each subscriber database.

Our architecture is especially designed to support dynamic intra— and inter—enterprise collab-
oration, by enabling each department involved to supply all relevant partners with the required
information.

2.2 Components

We will now discuss the required components of the architecture using a case study, to draw up
the benefits of our dynamic information grid. This example describes our approach to solve one
of the multiple challenges concerning collaborative work: distributed information management.

Consider a university planning to manage data concerning their students more efficiently
(Figure 1). To simplify our scenario we assume that there are only three faculties or departments
involved: the central administration (A) of that university, the department of biology (B),
responsible for the major subject and the department of chemistry (C), responsible for the
minor subject. Further departments or divisions may join this collaboration at any time. Each
department manages its own student database, containing all the relevant data for its everyday
business.

Administration (A)

v

3
T ql; T
= 1 /@

Biology (B) Chemistry (C)

Figure 1: Data Management realized with DIGAME

The central administration collects matriculation data of the students, including their names,
addresses, and field of study. This basic information is substantial for both faculties, that of the
major and minor studies, as well as for additional departments managing grants, internships,
or sporting activities. The department of biology uses a predefined part of the matriculation
data as basis for its own data stock. Local applications create additional data like exam results
and absent times, stored separately. Accordingly, the department of chemistry enriches the
matriculation data with information concerning the minor studies. This data is also required
by the department of biology, since it is responsible to monitor the process of the studies and
the compliance of obligations. Both, biology and chemistry departments use the administrative
information for their specific assignment. In return, the central administration requires data for
being able to charge the correct amount of tuition fees or remove the students from the registers.

Basically there are two different techniques for providing the peers (departments) with the
required data. Contrary to the commonly used method querying the data sources actively, our

approach uses replication of data and schema, initiated by the data source. Referring to our ex-
ample, the biology department gets data updates whenever changes occur in the administration
and chemistry databases rather than having to request for updated data items continuously and
vice versa. Our DIGAME architecture (Figure 2) consists of the following components:

S IS.=xs,
i Wrapper 1 iy i Wrappern ¢
A (A]~ [xs] 18] - [is.] Al 1Al 8] - xs.] [[18] -~ [1s.]
T
ES,| - |ES,, ES,| - |ES,,
‘cs‘\ Ps, [I1S.] - [is.] ‘cs"\ Ps, [18,] \lsm\‘
ﬂtabasﬁ ﬁtabaseﬁ
— — —_—
Component 1 Component n

Figure 2: DIGAME Architecture

Autonomous Component Databases: As already mentioned our architecture is designed
for integrating data from across autonomous data sources. The peers involved are linked to an in-
formation grid, retaining their local autonomy completely. According to the 3-level-architecture
[3] and the architecture for loosely coupled multidatabases [8], each component database con-
sists, besides the internal schema, of a conceptual and several external schemas. The conceptual
schema (CS) comprises the locally maintained private schema (PS) and a couple of schemas im-
ported from other peers (IS), managed by a wrapper component. Local applications (A) access
the data via external schemas (ES), which are derived from the whole conceptual schema, pro-
viding solely read-only access to all imported schemas. The grid infrastructure does not include
a global view over the integrated data, but every peer maintains its own integrated schema.
Due to the absence of a global view, we have ideal conditions for individual integrations on each
peer.

Wrapper: The core of our architecture is the wrapper component. As part of the mid-
dleware, it is responsible for negotiating and establishing communication and exchanging data
between the component databases. For this it has to detect modifications on the local data
and schema. If there are triggers of underlaying database systems available, they should be
used, particularly their extended functionality given by recent developments in database sys-
tems [11]. All the meta data accumulated is stored in a repository, particularly a copy of the
import schemas mentioned above and export schemas (XS) based exclusively on the private
schema. In fact each import schema matches an export schema, offered by one of the remaining
peers.

2.3 Characteristics

The combination of loosely coupled multidatabases with the achievements of the more recent field
of P2P data management provides a promising framework for an enterprise information platform.
We are thus able to apply the flexible interconnectivity of P2P systems to multidatabases,
including not only relational databases, but a loosely coupled federation of virtually any kind of
data source. As the peers serve all their local applications with the data required, there is no need
for these to query remote data sources, leading to an increase of performance. Furthermore, a
temporary network blackout can be bridged without being noticed by the applications. To ensure
a high level of data quality, the data can only be modified by the data owner. Information sharing
between autonomous data sources is realized without loss of data ownership and autonomy on
each peer, leading to a higher quality of data. To guarantee both, the correctness and up-to-
dateness of the data, each single modification can be propagated by pushing it to the subscriber
databases. Hence each peer is able to provide, a running network environment supposed, up-
to-date data to its applications at any time. Due to the push-based characteristics of DIGAME

updates may be lost if a communication failure caused by a network or computer breakdown
occurs. In this case we integrate a pull-based fallback mechanism into our architecture.

3 DicaME Link Patterns

Any information grid based on our DIGAME architecture, can either be planned or evolve dy-
namically. In both strategies the following link patterns between the participating peers can be

identified (Fig. 3):
e «—
—

Publisher Subscriber Basic

Pattern Pattern Pattern
Data Hub Pattern Data Backbone Pattern

Figure 3: DIGAME link patterns

Publisher Pattern: A peer, which exclusively provides data without receiving any data,
implements the Publisher Pattern.

Subscriber Pattern: A peer, which exclusively receives data without publishing any data,
implements the Subscriber Pattern. Of course a peer can only subscribe to data, published by
a remote one.

Basic Pattern: Usually a peer will implement this combination of both elementary link pat-
terns. It receives data from remote data sources, while it publishes data to subscriber databases.
Certainly the amount of its incoming data flows is independent from its outgoing data flows.

Data Hub Pattern: This pattern is a specialisation of the basic pattern. As soon as a peer
forwards an exact copy of the data received from another peer, it is called a data hub. If there is
no possibility or no intention to establish a direct link between two peers, the data hub provides
a way to receive data from an indirectly connected source. Is the data propagated by more
than one data hub, we have to prevent a peer to get identical information items from different
sources, without noticing it. Therefore we have introduced a global identification mechanism
for information items [10]. Please note, that the data hub pattern can only be applied, if our
DiGAME architecture (Fig. 2) is extended to allow the data exported to be based on the complete
conceptual schema, i.e. particularly the data imported from other peers. Thus the data owner
may lose control over its own data.

Data Backbone Pattern: A special form of a data hub is the data backbone pattern. A
peer, which corresponds to this pattern, distributes data starlike from multiple sources. Thus it
is a crucial node inside the information grid and represents always a weakness of a peer-to-peer
environment. This single point of failure should be avoided as far as possible.

Of course, this list of link patterns is not exhaustive, since there is a multitude of peer
constellations imaginable. We have only presented the most important building blocks for our
DIGAME information grid.

4 Related Work

With the raise of filesharing systems like Napster or Gnutella [4] the database community started
to seriously adopt the idea of P2P systems to the formerly known loosely coupled database
systems. Particularly the Piazza [7] project is worth mentioning, where a P2P system is built
up with the techniques of the Semantic Web [2] with local point—to—point data translations,
rather than mapping to common mediated schemas.

Our strategy allows data to be exchanged among distributed databases connected through
a lazy network. This means, that although a running network may not be guaranteed and thus
some data broadcasts may be lost, the system is able to heal itself. In contrast to the broadcast

disks [1], we ensure in our model, that data is only broadcasted to the clients when changes
occur, unless the communication between both peers crashes. Hence our approach resembles a
push—based system with a pull-based fallback, similar to [1] with the major difference that our
approach is not based on broadcast disks, but on a push—based replication strategy.

Most of the research on active multidatabases has been done concerning global integrity.
Chawathe et al. [5] propose a toolkit for constraint management in loosely coupled systems.
Worth mentioning is also the idea of Gupta and Widom to optimize the testing of global con-
straints by local verification [6]. Conrad and Tirker [12] extend a multidatabase system by
ECA-Rules to preserve consistency. A main challenge hereby is to detect local events, especially
schema and data modifications, which is commonly done by a software module for each data
source.

5 Conclusion and Future Work

We have presented an architecture, which connects heterogeneous and autonomous data sources
creating a dynamic P2P database and acts without any central authority. Preserving local
autonomy we have achieved, that each local administrator may decide on his level of participa-
tion. Data provided by other peers can be subscribed and integrated into the local database as
needed, whereupon changes on the subscribed data and schema items are actively propagated
to the relevant peers. The composition of the information grid can either be planned or evolve
dynamically, similar to classical P2P systems, where we have identified link patterns.

In the next steps we have to concretize the concepts proposed, especially event detection and
communication failures. Besides the implementation of a relational prototype with a concrete
wrapper component, we have to specify a communication protocol including a sophisticated data
exchange format (e.g. XML or OWL).

Due to its characteristics DIGAME provides a promising infrastructure for a diversified ap-
plication field, including e-business, e-science, e-government, or e-health.

References
[1] Swarup Acharya, Michael Franklin, and Stanley Zdonik. Balancing push and pull for data broadcast. In

Proceedings of the 1997 ACM SIGMOD international conference on Management of data, pages 183-194,
Tucson, Arizona, 1997. ACM Press.

[2] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Scientific American, Mai 2001.

[3] Thomas Burns, Elizabeth N. Fong, David Jefferson, Richard Knox, Leo Mark, Christopher Reedy, Louis
Reich, Nick Roussopoulos, and Walter Truszkowski. Reference model for dbms standardization, database
architecture framework task group (daftg) of the ansi/x3/sparc database system study group. SIGMOD
Record, 15(1):19-58, 1986.

[4] Bengt Carlsson and Rune Gustavsson. The Rise and Fall of Napster - An Evolutionary Approach. In AMT
2001, Proceedings of the 6th International Computer Science Conference - Active Media Technology, volume
2252 of Lecture Notes in Computer Science, pages 347-354, Hong Kong, China, 2001. Springer.

[5] S. Chawathe, H. Garcia-Molina, and J. Widom. A Toolkit For Constraint Management In Heterogeneous
Information Systems. In Proceedings of the International Conference on Data Engineering, pages 56—65, New
Orleans, Louisiana, February 1996.

[6] Ashish Gupta and Jennifer Widom. Local Verification of Global Integrity Constraints in Distributed
Databases. In Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data
SIGMOD’93, pages 49-58, Washington, DC, 1993.

[7] Alon Y. Halevy, Zachary G. Ives, Peter Mork, and Igor Tatarinov. Piazza: Data Management Infrastructure
for Semantic Web Applications. In Proceedings of the twelfth international conference on World Wide Web,
pages 556-567, Budapest, Hungary, 2003.

[8] Dennis Heimbigner and Dennis McLeod. A Federated Architecture for Information Management. ACM
Transactions on Information Systems (TOIS), 3(3):253-278, 1985.

[9] Witold Litwin and Abdelaziz Abdellatif. Multidatabase Interoperability. Computer, 19(12):10-18, 1986.

[10] Cristian Pérez de Laborda and Stefan Conrad. A Semantic Web based Identification Mechanism for
Databases. In Proceedings of the 10th International Workshop on Knowledge Representation meets Databases
(KRDB 2008), Hamburg, Germany, September 15-16, 2003, volume 79 of CEUR Workshop Proceedings,

pages 123-130. Technical University of Aachen (RWTH), 2003.

[11] Christopher Popfinger. Realisation of Active Multidatabases by Extending Standard Database Interfaces. In
Workshop on Foundations of Databases (Grundlagen von Datenbanken), pages 40—44. Faculty of Computer
Science, University of Magdeburg, 2003.

[12] Can Tiirker and Stefan Conrad. Towards Maintaining Integrity of Federated Databases. In Data Management
Systems, Proc. of the 3rd Int. Workshop on Information Technology, BIWIT 97, July 2—4, 1997, Biarritz,
France, pages 93-100, Los Alamitos, CA, 1997. IEEE Computer Society Press.

