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Abstract:
Most Semantic Web applications are still unable to query data stored in relational

databases using their own built-in functionality. Hence, needing access to such data,
they have to fall back on SQL and the relational model. In this paper we describe
Relational.OWL, our technique to automatically extract the semantics of relational
databases and transform this information into a machine processable and understand-
able representation. Since this data can now be queried using semantic query lan-
guages, it has to be analyzed whether this combination of Relational.OWL and e.g.
RDQL can be a real alternative to the commonly used SQL access to relational data.

1 Introduction

Despite all the efforts to build up a Semantic Web, where each machine can understand
and interpret the data it processes, information is usually still stored in ordinary relational
databases. Both, the semantic and the relational worlds coexisted for a long time with little
effort in merging them. The result were large amounts of information stored in relational
databases and inaccessible for any application of the Semantic Web, unless it used SQL.
As a consequence, such applications needed to create a corresponding mapping between
the relational and the semantic data by themselves. Realizing this situation, some efforts
have arisen to straighten out this deplorable situation.

In [PC05] we have presented Relational.OWL, a technique to automatically extract the
semantics of relational databases and transform this information into RDF/OWL, process-
able by a wide majority of Semantic Web applications. The advantage of such an approach
is obvious, since it makes relational data processable for Semantic Web applications us-
ing their built-in functionality like query languages or reasoning mechanisms. In fact, no
Semantic Web application needs to implement its own relational to semantic mapping any
more.

In this paper we analyze whether the combination of Relational.OWL and an exemplary
semantic query language (RDQL) can be an alternative to an ordinary query with SQL.
In other words, we want to check out if combining Relational.OWL and such a query
language can lead us to the same results as a normal relational query. Since SQL was
extended repeatedly in its expressiveness during the last decades, a direct comparison of
RDQL and SQL would be unfair. We thus limit our analysis to the question, whether the
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combination of Relational.OWL and RDQL is capable to provide the same results like the
relational algebra.

The remainder of this paper is organized as follows: In the following section we discuss
some related work, followed by a short introduction to Relational.OWL in section 3. The
comparison between the operations of the relational algebra and RDQL is made in section
4. Section 5 finishes with a small discussion and some ideas for future work.

2 Related Work

Recently, some efforts arose in bringing together relational databases and the Semantic
Web. For instance, An et al. outline an automatic mapping between relational tables and
ontologies in [ABM04]. Unlike our approach, it requires a target ontology onto which the
relational tables are mapped to. Since a target ontology may not always exist or the agent
assigned with the mapping task may not know of its existence, such a mapping may often
be impossible. However, having found such a mapping between the relational database and
the target ontology, the authors do not mention how they deal with schema evolution in the
original database and whether the generated data looses its connection to the originating
database. Our approach takes schema and data evolution directly into account and gives
the possibility to link the generated data and schema representation to its original source.

Bizer and Seaborne introduced in [BS04] a query mechanism for their mapping relational
databases to ontologies approach. Contrary to our technique, it converts legacy data stored
in databases into ”real” RDF objects, i.e. an address would be represented as a RDF ad-
dress object. Since the corresponding mappings between the database and RDF have to be
created manually, they must be rechecked after each evolution of the schema. Especially
in environments with constantly changing schemas, this is not manageable any more.

Haase et al. provide in [HBEV04] a survey describing different RDF query languages,
including RDQL on which we want to focus in this paper. The paper starts with the
promising challenge to examine, whether the query languages are relational complete or
not. Since the paper examines six different query languages it analyzes the languages
superficially, omitting the argumentation for the conclusions. In fact, the authors seem to
have underestimated the expressiveness of RDQL.

Karvounarakis et al. present in [KCPA01] RQL, an advanced declarative query language
for RDF schemas and descriptions. To achieve the best possible query results, the authors
store the RDF data in a relational database, where the actual query is performed. Therefore,
they make an adequate mapping of all RDF triples to the relational data model. Since this
mapping is specific to the needs of querying normal RDF triples, stored in a special way
in a relational databases, it is hard to apply it to our needs. In fact, we would have to
transform data stored in relational databases to RDF/OWL using Relational.OWL, just to
be stored once again in a relational database, to be able to query it with RQL.

In [Mel99], Melnik introduces a working draft for an algebraic definition of RDF mod-
els. Unfortunately, this proposal is rather rudimentary lacking of operations required for
querying the RDF graph. A more sophisticated approach is presented by Frasincar et al.



[FHVB04]. They introduce a complete algebra for RDF, inspired by the relational alge-
bra. Consequentially, the authors do not only introduce the corresponding algebraic data
model, but also adequate operators like the projection, the cartesian product, or the selec-
tion. Nevertheless, the authors did not make a direct comparison to the relation algebra.

3 Relational.OWL

In [PC05] we introduced Relational.OWL, a data and schema representation technique,
which adopts Semantic Web techniques to the data and schema representation process of
(relational) databases. Contrary to other approaches where RDF is stored in relational
databases and relational data into RDF (e.g. [Mel01]), Relational.OWL aims at bringing
together the representation of both, database data and schema components with a common
mediated language based on the Web Ontology Language (OWL) [Mv04]. In this section
we give a short introduction to the Relational.OWL representation technique, since it is
essential for a subsequent application to the data querying process with RDQL (cf. Section
4). For a detailed description of Relational.OWL we again refer to [PC05].

3.1 The Relational.OWL Ontology

To represent the upmost relevant metadata of a relational database using Semantic Web
techniques, we require an OWL ontology which describes the schema of a relational
database in an abstract way. This OWL representation can easily be interpreted by any
remote database or application, which is capable to process OWL and has access to the
Relational.OWL ontology. As a further step we use this schema representation itself as a
novel ontology for creating a representation format, which is suitable for the corresponding
data items.

To describe the schema of a relational database with the techniques provided by the Web
Ontology Language OWL, we have to define reference OWL classes centrally, to which
any document describing such a database can refer to. The abstract representation of
classes like Table or Column become hereby a central part of the knowledge represen-
tation process realized within OWL. Additionally we have to specify possible relationships
among these classes resulting in an ontology, a relational database can easily be described
with. We call this central representation of abstract schema components and relationships
Relational.OWL.

Similar representations based on RDF or OWL, which may evolve elsewhere,
may be linked to Reltional.OWL with corresponding owl:equivalentClass or
owl:equivalentProperty relationships. As a result, database representations us-
ing one of the ontologies mapped, can be understood by any application, which usually
uses one of these ontologies.

In other words, each component (database) involved in a representation based on one of
these ontologies is able to process documents based on any of the interconnected represen-



tation formats. We do not even have to adapt the reasoning processes, since it is enough to
create a semantic mapping between two or more ontologies to make them exchangeable,
as long as they correlate semantically.

3.2 A novel Ontology

After the description of how to represent the schema of a database using OWL and our
Relational.OWL ontology, we now focus on how to use the schema representation just cre-
ated as a novel ontology. With this tailored ontology-based representation of the database
schema, we are able to represent the data, which is stored in that specific database. As a
result, data stored in a relational database can be represented as instances of its own OWL
schema.

According to the possibilities given by OWL and due to the schema representation pre-
sented above, we are able to use individuals (i.e. instances) of our Relational.OWL on-
tology as classes. Thus the schema representation just created belongs to OWL Full, and
not to OWL Lite, nor to OWL DL [DS04]. Of course, the fact that we can not restrict
the complexity to one of the subclasses does not automatically result in a complex rep-
resentation of data and schema items. First implementations make us confident of most
OWL reasoning tools being able to handle data and schema representations created using
Relational.OWL.

In order to realize this kind of data representation process, we have to ensure that all
components involved (e.g. exchange partners) are able to process and understand OWL,
have access to Relational.OWL (or a semantically equivalent ontology), and to the OWL
schema representation of the corresponding database.

Using the schema constructed above as a novel ontology means to represent the data stored
in that specific database using a tailored data representation technique. As a result, the data
can be handled using common OWL techniques for data backups, data exchanges, or any
kind of data processing tasks.

In fact, this interdigitation of schema and data corresponds exactly to the data management
in relational database systems, where data items are stored as instances of their schema.
As a result, the ontology, the data is described with, changes as soon as the schema of the
originating database is altered. Using conventional techniques in data exchange processes
would mean to manually adjust the corresponding exchange format. Using knowledge
representation techniques, this is done automatically.

A summary of all the classes and relationships among them together with an exemplary
database representation can be found in [PC05].



4 Relational.OWL and RDQL

Having created an automatic transformation mechanism from data stored in relational
databases into a representation, which is processable by basically any Semantic Web ap-
plication, all kinds of legacy data stored in relational databases become an integral part of
the Semantic Web.

As a result, Semantic Web applications needing access to data stored in relational
databases do not have to query these databases using relational query languages any more.
They may equally use their preferred query language like RQL [KCPA01], RDQL [Sea04],
or Xcerpt [BS02], as long as this query language provides the required expressiveness. In
this paper we analyze RDQL as a representative for all RDF query languages, since it is
supported by the Jena Framework [Jen04] and submitted to the W3C [Sea04]. All queries
presented in this paper have been verified using the Jena implementation of RDQL. Nev-
ertheless, any RDF query language could be evaluated accordingly.

We thus have to analyze whether all the possible queries on the original relational database
can be expressed using RDQL on the Relational.OWL representation of that specific
database. In fact SQL has developed throughout the years from a simple query language
based on the relational calculus to a powerful language for integrating data from across
multiple data sources (cf. [MMJ+01]). Hence, we have decided to compare the expres-
siveness of RDQL only with the relational algebra [Cod72] and not with SQL, i.e. to check
if RDQL is relational complete or not.

The comparison is based on a simple database containing personal and contact information
of e.g. business partners. It consists of the following two relations:

Address(AddressID, Street, ZIP, City, CountryID) and
Country(CountryID, Name).

Since there are various positions on how to verify the relational completeness of a query
language (c.f. [CH79]), we have decided to follow the perception of Elmasri and Navathe
[NE01] regarding the set {σ, π,∪,−,×} of relational operations as complete. Addition-
ally we show how to realize the join operation with RDQL, since it is one of the most
important operations of relational queries. Due to the fact that RDQL is not closed, i.e.
the result of an RDQL query is not an RDF triple but a list of possible variable bindings,
a direct comparison to the relational algebra, which itself is closed, may in some cases be
slightly imprecise.

4.1 Selection

One of the basic operations of the relational algebra is the selection σ. The expression

σName=”Australia”(r(Country)) (1)



would thus select all tuples of the Country relation where the attribute Name equals
Australia. Since we have created an own OWL:Class for each relation in our
database, we have to apply a similar constraint for the objects of this class to obtain the
corresponding result with the Semantic Web version of our database. A possible RDQL
query is

SELECT ?x, ?y, ?z
WHERE (?x, rdf:type, dbinst:COUNTRY)

(?x, dbinst:COUNTRY.NAME, "Australia")
(?x,?y,?z)

USING dbinst for [...]
rdf for [...]

The RDQL query representing the selection contains three main clauses. Since RDQL
is not closed, we have decided to include the three variables into the SELECT clause,
from which a valid RDF triple could be created. In the first line of the WHERE clause
we restrict the result set to contain only objects of the type dbinst:COUNTRY having
their origin in the Country relation of our database. The actual selection σ is performed
in the next line, where we enforce the value of the property dbinst:COUNTRY.NAME
of all the objects represented by the ?x variable to be Australia. The last line of the
WHERE clause is required to select the entire set of triples describing the classes which
fulfil the conditions described above. Both, the rdf and the dbinst prefixes are defined
in the USING clause, representing the commonly used prefix for RDF and the URI for
the schema of the database respectively. Since we need the same prefix definitions in all
remaining RDQL queries, we do not describe them in the following sections once again.

4.2 Projection

We are able to select relevant attributes of a relation with the projection operation π.
Hence, the following expression means that the Street and City attributes are picked
out of the Address relation:

πStreet,City(r(Address)). (2)

Unlike SQL, we cannot use the SELECT clause of RDQL for the projection. It has to be
done in the AND clause where we can provide more complex constraints.

SELECT ?x, ?y, ?z
WHERE (?x, rdf:type, dbinst:ADDRESS)

(?x,?y,?z)
AND ((?y EQ dbinst:ADDRESS.STREET)||

(?y EQ dbinst:ADDRESS.CITY))
USING dbinst for [...]

rdf for [...]



Analogous to the query described above, the result set is restricted to objects of the
dbinst:ADDRESS type in the WHERE clause. The actual projection is done in the AND
part of the query, where we require the properties of the result triples (i.e. ?y) to be either
dbinst:ADDRESS.STREET or dbinst:ADDRESS.CITY. The result is a list of all
the triples containing city or street information within an address object.

4.3 Set Union

The union ∪ operation unifies two union-compatible relations (cf. [Dat82]). The expres-
sion

πCountryID(r(Address)) ∪ πCountryID(r(Country)) (3)

thus unifies all tuples from the CountryID attribute in the Address with those of the
Country relation. If we want to query the Semantic Web representation of the database
using RDQL, we first have to perform the projection within the AND clause restricting the
?y variable to both COUNTRYID attributes. The restriction to both classes is done in the
remaining two lines of the AND clause.

SELECT ?x, ?y, ?z
WHERE (?x, ?y,?z)

(?x,rdf:type,?a)
AND ((?y EQ dbinst:COUNTRY.COUNTRYID)||

(?y EQ dbinst:ADDRESS.COUNTRYID))&&
((?a EQ dbinst:COUNTRY)||
(?a EQ dbinst:ADDRESS))

USING dbinst for [...]
rdf for [...]

This RDQL query thus returns all COUNTRYIDs originated in both, the
dbinst:COUNTRY and dbinst:ADDRESS objects, i.e. the same as our expres-
sion of the relational algebra.

4.4 Set Difference

If it is required to obtain all the tuples contained in one relation and not in a second one,
we use the set difference −. Thus, the expression

πCountryID(r(Country))− πCountryID(r(Address)) (4)

returns all existing CountryIDs never used in the Address relation. The projection has
been introduced only to obtain union-compatibility (cf. [Dat82]).



Within the corresponding RDQL query, objects of the type dbinst:COUNTRY are repre-
sented by the variable ?a and the dbinst:ADDRESS objects by ?x. The set difference
constraint is specified in the AND clause where we refer to the values of both COUNTRYID
properties assigned to the variables in the WHERE clause.

SELECT ?b
WHERE (?a, dbinst:COUNTRY.COUNTRYID, ?b)

(?a, rdf:type, dbinst:COUNTRY)
(?x, dbinst:ADDRESS.COUNTRYID, ?y)
(?x, rdf:type, dbinst:ADDRESS)

AND !(?b EQ ?y)
USING dbinst for [...]

rdf for [...]

Similar to the queries presented above, this RDQL query returns exactly the same infor-
mation as its corresponding relational algebra expression.

4.5 Cartesian Product

The cartesian product × unifies two relations into a new relation containing the complete
set of attributes from the two original relations. The values of this relation are a combina-
tion of all tuples of the first relation with all tuples of the second relation. The expression

r(Country)× r(Address) (5)

thus corresponds to a relation containing all attributes from the Country relation and all
those from the Address relation. The original attributes are renamed to guarantee their
uniqueness (cf. [Dat82]). The amount of values corresponds to (m ∗ n), whereas m is the
number of values in the first table and n in the second table respectively.

The definition of a cartesian product within the Semantic Web is more complex than it
seems at a first glance. Melnik, for example, does not mention a cartesian product of
RDF triples or Semantic Web objects within his RDF algebra [Mel99]. Intuitively, the
cartesian product of two sets with m and n objects would be to create (m∗n) new objects,
containing the properties of two objects, one of each set respectively (cf. [FHVB04]).

Since RDQL is not closed and we cannot receive objects as a result form an RDQL query,
we have to express the cartesian product differently. There are two main options on how
to express the cartesian product. Both are as close as possible to the cartesian product of
the relational model.

The first option returns all possible combinations of two properties, each from a dif-
ferent set of objects, i.e. one property from the dbinst:COUNTRY and one from the
dbinst:ADDRESS objects at a time:



SELECT ?a, ?b, ?c, ?x, ?y, ?z
WHERE (?a, ?b, ?c)

(?a, rdf:type, dbinst:COUNTRY)
(?x, ?y, ?z)
(?x, rdf:type, dbinst:ADDRESS)

USING dbinst for [...]
rdf for [...]

The second option returns a list of all properties contained in any object of the
dbinst:COUNTRY and dbinst:ADDRESS classes.

SELECT ?x, ?y, ?z
WHERE (?x, ?y,?z)

(?x,rdf:type,?a)
AND ((?a EQ dbinst:COUNTRY)||

(?a EQ dbinst:ADDRESS))
USING dbinst for [...]

rdf for [...]

Intuitively, this query seems to be more adequate than the one mentioned above. However,
it is very similar to the RDQL query in section 4.3 where we expressed the set union. The
main difference between both queries is only the restriction in the union query.

4.6 (Equi-)Join

The most important relational operation is indeed the join operation on introduced in
[Cod79]. The θ join of two relations R1 and R2 relating to their attributes B1 and B2

is the concatenation of the attributes of R1 and R2, including their corresponding values,
whenever attribute B1 and B2 correlate with the θ condition. If θ is =, the join operation is
called equi-join. Since the join operation is usually stated in terms of the cartesian product
(cf. [NE01]), the translation of the join operation to RDQL may help to decide, which
of both possibilities described in section 4.5 should be considered the cartesian product
RDQL correspondent.

The two relations Address and Country can be joined with the expression

r(Address) onCountryID=CountryID r(Country). (6)

Contrary to the natural join, the resulting relation contains all the attributes from the first
and the second relation including both CountryID attributes.

Once again, since RDQL is not complete, we cannot find an exact equivalent query to
the expression of the relational algebra just mentioned. However, we can express quite
similar constraints and put both dbinst:COUNTRY and dbinst:ADDRESS objects
into a corresponding relation.



SELECT ?a, ?d, ?e
WHERE (?a, ?d, ?e)

(?a, rdf:type, ?c)
(?x, rdf:type, dbinst:COUNTRY)
(?x, dbinst:COUNTRY.COUNTRYID, ?y)
(?r, rdf:type, dbinst:ADDRESS)
(?r, dbinst:ADDRESS.COUNTRYID, ?s)

AND (((?c EQ dbinst:COUNTRY) || (?c EQ dbinst:ADDRESS)) &&
(?y EQ ?s) &&
((?x EQ ?a) || (?r EQ ?a)))

USING dbinst for [...]
rdf for [...]

For expressing the required join condition between both classes, we first define a free result
variable ?a. The objects of the dbinst:COUNTRY class are bound to ?x and those of
the dbinst:ADDRESS class to ?r. The values of the relevant CONTRYID attributes are
bound to ?y and ?s correspondingly. The remaining relation between these bound and
unbound variables is specified in the AND clause, where we restrict the result set to either
be a dbinst:COUNTRY or a dbinst:ADDRESS object. The actual equality condition
for the values in ?y and in ?s from the join condition is given in the next line. The free
variable ?a is finally bound to the result set in the last line of the AND clause.

The decision, which of the queries described in section 4.5 should be considered as the
RDQL correspondent of the cartesian product remains unanswered. Even though the query
defined in this section certainly signs to the second alternative, where we also had a free
variable, this question may probably not be answered precisely until the queries of RDQL
can be referred to as closed.

5 Discussion and Future Work

In this paper, we described our approach to semantically represent the schema and data
stored in relational databases. Contrary to other approaches, we take the complete schema
of the database into account creating a database specific ontology. Based on this ontol-
ogy, we showed how to represent data items stored in that specific database. With this
approach, the schema and data items of each relational database are ready for semantic
reasoning without the intervention of any expert. Nevertheless, an expert could add addi-
tional semantics to such a data, if it is required.

The next step was to analyze whether such a relational data and schema representation
could potentially replace existing interfaces for the access of relational data out of the
Semantic Web. The advantage of such an approach is obvious: All Semantic Web ap-
plications could query data stored in relational databases with their own built-in query
languages without having to convert this data in a manual and time-consuming process. A
direct comparison of this approach with SQL, the commonly used interface to relational
databases, would be unfair, since SQL has developed during the last decades and most



semantic query languages are rather rudimental. Hence, we decided to check whether the
expressiveness of querying semantic data created with Relational.OWL is similar to that
of the basic relational algebra. We chose RDQL as an exemplary query language since it
is widely accepted and provides a stable implementation.

During our analysis we observed that the main problem of RDQL (and of most semantic
query languages) is the absence of closeness, i.e. the result set of a query is not a valid
RDF/OWL expression any more.

As long as this fundamental drawback is not resolved, we probably will not achieve a
language capable to compete with SQL. Nevertheless, we showed in this paper that we are
able to simulate each of the main relational algebra operations. However, the question of
the relational completeness of RDQL in combination with Relationaol.OWL is still to be
answered.

In fact, the results of this paper should be verified with a semantic query language which
is closed concerning its queries, i.e. where the result set contains valid RDF triples. The
results of this paper make us confident that the combination of such a language with Rela-
tional.OWL could replace current SQL gateways to relational databases.
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