
Database to Semantic Web Mapping using RDF
Query Languages

Cristian Pérez de Laborda and Stefan Conrad

Institute of Computer Science
Heinrich-Heine-Universität Düsseldorf

D-40225 Düsseldorf, Germany
{perezdel,conrad}@cs.uni-duesseldorf.de

Abstract. One of the main drawbacks of the Semantic Web is the lack
of semantically rich data, since most of the information is still stored
in relational databases. In this paper, we present an approach to map
legacy data stored in relational databases into the Semantic Web using
virtually any modern RDF query language, as long as it is closed within
RDF. Consequently, a Semantic Web developer does not need to learn
and adopt a new mapping language, but he may perform the mapping
task using his preferred RDF query language.

1 Motivation

Despite the vision of a Semantic Web [6] and many efforts helping to realize it,
the actual Semantic Web still lacks of enough semantic data. Most information
is still modeled and stored in relational databases and thus out of reach for
many Semantic Web applications. As a consequence, such applications need to
create a corresponding mapping between the relational and the semantic models
by themselves for being able to access relational data. Realizing this situation,
some efforts have arisen to straighten out this deplorable situation.
Most approaches translate relational data into a Semantic Web representation
using a proprietary mapping language (cf. Section 2). In [19] we have introduced
Relational.OWL, our technique to automatically transform relational data into
a machine processable and understandable representation (cf. Section 3.1). Nev-
ertheless, such a representation does not include real semantics, since it converts
the schema of a database automatically into an ontology and the data items
as its instances, i.e. the data is described as it was in the database. For many
Semantic Web applications, this is a reasonable technique, since they are able
to quickly access legacy data stored in a relational database using their own
built-in functionality. However, such a representation could be inappropriate, if
the data has to be processed for further reasoning tasks.
In this paper we present how to map relational data into the Semantic Web
using virtually any modern RDF query language, as long as the language is
closed within RDF, i.e. it returns valid RDF graphs as query results. For this
purpose, data and schema components of the original relational database are

Conceptual Modeling - ER 2006, 25th International Conference on Conceptual Modeling, Tucson, Arizona, November 2006, Springer Verlag

first translated automatically into their Semantic Web representation based on
Relational.OWL. Thereupon, they may either be processed or mapped directly
to a target ontology. To perform such a mapping task, a Semantic Web developer
does not need to learn and adopt a new mapping language, but he may perform
the mapping task using his preferred RDF query language.
The remainder of this paper is organized as follows. In the next Section we
discuss some related research. In Section 3 the foundations of this paper are de-
scribed. The relational database to Semantic Web mapping process is introduced
in Section 4 and evaluated in Section 5. Finally, we conclude in Section 6 with
a short discussion and some ideas for future work.

2 Related Work

Recently, some efforts arose in bringing together relational databases and the
Semantic Web. Nevertheless, most of these approaches do not use relational
databases as a data source, but to store RDF triples in tailored tables, exploting
the improved query performance of current relational databases (e.g. [13], [16],
or [11]). The main drawback of such approaches is, that the corresponding data
has to be available in RDF, i.e. their aim is not to convert legacy data into a
Semantic Web representation, but to give applications fast access to RDF triples.
Some approaches try to map legacy relational databases to the Semantic Web.
Bizer [7] for example, introduces a mapping from relational databases to RDF.
Unlike our approach which is based on existing query languages, this method
requires a specific mapping language, which, although it is based on RDF, still
has to be learned and adopted by the corresponding developers.
An et al. outline in [5] a further approach from tables to ontologies. Unlike
our technique, this approach maps database schemas directly into ontological
concepts, assuming that the required database was designed following several
ER design principles, e.g. the database is normalized and contains meaningful
table or column names.
Petrini and Risch introduce in [21] their technique to query relational databases
using RDF query languages, which is closely related to the approach presented
in this paper. Nevertheless, it has some drawbacks. The mapping from relational
tables to the Semantic Web is defined within a custom made mapping table,
where columns or tables are related to objects or attribute values. As a result,
the mappings between both worlds are always 1:1. Our mapping technique is
completely based on the Semantic Web and allows the mappings to be as complex
as a query language can be, i.e. we would even be able to use aggregations, if
they are supported by the query language used.

3 Foundations

In this section we present the foundations, this work is based on. First, we intro-
duce Relational.OWL, an approach to automatically transform relational data
and schema items into a Semantic Web representation. After this, we explain in

Section 3.2 the difficulties in querying the resulting RDF graphs using current
RDF query languages.

3.1 Relational.OWL

In [19] we introduced Relational.OWL, a data and schema representation, which
adopts Semantic Web techniques to the data and schema representation process
of (relational) databases. Contrary to other approaches where RDF is stored in
relational databases (e.g. [15]), Relational.OWL aims at bringing together the
representation of both, database data and schema components with a common
mediated language, based on the Resource Description Framework (RDF) and
the Web Ontology Language (OWL) [14]. In this section we give a short intro-
duction to the Relational.OWL representation technique, since it is essential for
a subsequent application to the mapping process presented in this paper.

The Relational.OWL Ontology To describe the schema of a relational
database with the techniques provided by RDF and OWL, we have to define ref-
erence OWL classes centrally, to which any document describing such a database
can refer. The abstract representation of classes like Table or Column becomes a
central part of the knowledge representation process realized within OWL. Ad-
ditionally, we have to specify possible relationships among these classes resulting
in an ontology, a relational database can easily be described with. We call this
central representation the Relational.OWL ontology. It contains abstract defi-
nitions of relational databases D, tables T, columns C, primary keys P, foreign
keys F, and their corresponding relationships.
For each relational database RDBi, a Semantic Web correspondent
ROWLi(Si, Ii) is created, where Si is the schema and Ii the data instance rep-
resentation. Si will usually contain one subclass Di of D. Analogously, for each
relation R1, ...,Rm ∈ RDBi, a subclass T1, ..., Tm of T is created and included
into Si. The ∈ relationship between RDBi and Rj is then added using a cor-
responding hasTable property within the Di class. The remaining components
and their relationships are transformed correspondingly.
A snippet of a database representation using Relational.OWL is provided in Fig.
1. Its first element corresponds to a table containing residence information of a
business contact. In this case, the rdf:ID ADDRESS is equivalent to the table
name in the original database. Instead of exclusively using the table name as
an identifier, a complete URI pointing at this specific table can be specified
using an identifier, e.g. as in [17]. Each of the five columns is defined using a
owl:DatatypeProperty class, where all the properties required are specified.
The corresponding &dbs;Table and &dbs;Column objects are then linked using
a dbs:hasColumn property.
The primary key property of the table is represented using a
dbs:isIdentifiedBy property, whereas the dbs:PrimaryKey Object cor-
responds to the actual primary key. Since the primary key itself may consist
of more than one column, they are specified with dbs:hasColumn entries. The
second element in Fig. 1 describes the ZIP column of the address table. It
contains string values with a maximum length of eight characters.

<...>
<owl:Class rdf:ID="ADDRESS">
<rdf:type rdf:resource="&dbs;Table"/>
<dbs:hasColumn rdf:resource="#ADDRESS.ADDRESSID"/>
<dbs:hasColumn rdf:resource="#ADDRESS.STREET"/>
<dbs:hasColumn rdf:resource="#ADDRESS.ZIP"/>
<dbs:hasColumn rdf:resource="#ADDRESS.CITY"/>
<dbs:hasColumn rdf:resource="#ADDRESS.COUNTRYID"/>
<dbs:isIdentifiedBy>
<dbs:PrimaryKey>
<dbs:hasColumn rdf:resource="#ADDRESS.ADDRESSID"/>
</dbs:PrimaryKey>

</dbs:isIdentifiedBy>
</owl:Class>
<owl:DatatypeProperty rdf:ID="ADDRESS.ZIP">
<rdf:type rdf:resource="&dbs;Column"/>
<rdfs:domain rdf:resource="#ADDRESS"/>
<rdfs:range rdf:resource="&xsd;string"/>
<dbs:length>8</dbs:length>
</owl:DatatypeProperty>
</ ...>

Fig. 1. Schema Representation

Data Representation After having created a schema representation of a
database RDBi using OWL and our Relational.OWL ontology, we can regard
this representation itself as a novel ontology. With this tailored ontology-based
representation of the database schema, we are able to represent the data stored
in that specific database. As a result, data stored in a relational database can
be represented as instances of its own OWL schema.
In order to realize this kind of data representation process, we have to ensure
that all components involved (e.g. exchange partners) are able to process and
understand RDF and OWL, know the Relational.OWL ontology (or a seman-
tic equivalent), and have access to the OWL schema representation Si of the
database RDBi. As we have mentioned above, the Relational.OWL representa-
tion ROWLi of a relational database RDBi consists of two parts, the schema
ontology Si and its corresponding data instances Ii.
Using the schema Si as a novel ontology means to represent the data stored in
the database RDBi using a tailored data representation technique. As a result,
the data can be handled using common RDF/OWL techniques for data backups,
data exchanges, or any kind of data processing tasks within the Semantic Web.
A sample data set of a relational database is provided in Fig. 2.
A summary of all the classes and relationships among them, together with a
complete database representation can be found in [19].

3.2 Querying RDF Data

Despite the possibility to query RDF graphs in their XML representation using
XML query languages like XQuery [9], their possibilities to query the graph for
matching triples is rather rudimentary, ignoring the kind of information, which

<...>
<db:ADDRESS>
<db:ADDRESS.ADDRESSID>6824</db:ADDRESS.ADDRESSID>
<db:ADDRESS.STREET>Campus de Arrosadia</db:ADDRESS.STREET>
<db:ADDRESS.ZIP>31006</db:ADDRESS.ZIP>
<db:ADDRESS.CITY>Pamplona</db:ADDRESS.CITY>
<db:ADDRESS.COUNTRYID>152</db:ADDRESS.COUNTRYID>
</db:ADDRESS>
<db:COUNTRY>
<db:COUNTRY.COUNTRYID>152</db:COUNTRY.COUNTRYID>
<db:COUNTRY.NAME>Espa~na</db:COUNTRY.NAME>
</db:COUNTRY>
</...>

Fig. 2. Data Representation

can be revealed using reasoning mechanisms. In fact, all queries have to be
expressed as if they were treating real XML documents and not RDF graphs.
Hence, it soon became obvious, that tailored query languages for the Semantic
Web languages (e.g. RDF) were required. Naturally, most languages were based
on the SQL syntax in order to be easily understood and adopted by a broad
community. As we have shown in [18], these early languages like RDQL [24] have
one major drawback: they are not closed, i.e. the results of such queries are not
valid RDF triples, but a list of possible variable bindings. Hence, the query results
cannot be processed using ordinary reasoning mechanisms of normal Semantic
Web applications.
An RDF query language has to fulfill one main characteristic for being able to
describe a mapping between a relational database and the Semantic Web using
our Relational.OWL [19] technique: it has to be closed. Otherwise, the queries
used within the mapping process would not return valid RDF graphs but simple
variable bindings. Having chosen a closed query language, the expressiveness of
a mapping only depends on the query language itself.
In this paper we use the upcoming query language SPARQL [22] as an RDF
query language representative, since it will hopefully be recommended soon as a
de facto standard by the W3C. SPARQL is an extension of RDQL, eliminating
many of its drawbacks, like lack of expressiveness and completeness [18]. Despite
its novelty, the Jena Framework [2] already supports SPARQL using its ARQ
extension.
Indeed, we have shown in [20], that the combination of SPARQL and Rela-
tional.OWL could replace existing interfaces for the access of relational databases
out of the Semantic Web. We successfully simulated the basic operations
{σ, π,∪,−,×} of the relational algebra and showed how to express a join op-
eration with SPARQL. As we will see below, it can easily be deduced from the
cartesian product - just as it is done within the relational algebra.
Consider a sample database, which contains personal and contact information
of e.g. business partners and contains the following two relations:

Address(AddressID, Street, ZIP, City, CountryID) and
Country(CountryID, Name).

A typical join operation between these two relations could be as follows:

σAddress.CountryID=Country.CountryID(r(Address)× r(Country)).

Since SPARQL does not provide the possibility to specify nested queries, we have
to express the (equi-)join operation using a combination of a cartesian product
and two selections (cf. [20]). A possible SPARQL query, which holds the same
constraints like the relational algebra expression above and thus may be regarded
as a correspondent to the (equi-)join operation of the relational algebra can be
found in Fig. 3. We again refer to [20] for a detailed and complete analysis of
the basic relational operation equivalents in SPARQL.

PREFIX rdf:[...]
PREFIX db :[...]
CONSTRUCT {?a ?b ?c;

?e ?f}
WHERE {{?a ?b ?c;

rdf:type db:ADDRESS} .
{?d ?e ?f;

rdf:type db:COUNTRY} .
{?a db:ADDRESS.COUNTRYID ?x} .
{?d db:COUNTRY.COUNTRYID ?x}}

Fig. 3. Sample SPARQL Query

Taking into account the possibility to query the legacy data formerly stored in
relational databases using a query language like SPARQL, we have achieved a
reasonable alternative for Semantic Web applications to access such relational
data. As a consequence, all kinds of legacy data stored in relational databases
become an integral part of the Semantic Web.

4 Relational to Semantic Mapping

Despite being processable by any application understanding RDF, the data
extracted using Relational.OWL still lacks real semantic meaning. Indeed,
the information originally stored in relational tables is represented within a
table object and not within an appropriate Semantic Web object, e.g. an
http://www.w3.org/2000/10/swap/pim/contact#Person object. This draw-
back has to be accepted in order to achieve an automatic transformation from
relational databases to the Semantic world.
Nevertheless, many applications still require the data to be represented as real
semantic objects, for being able to perform reasoning tasks or further data pro-
cessing. To meet the demands of such applications, a data mapping from the
relational to the required data representation is needed.

4.1 Requirements

Common approaches like [8] introduce a special mapping language, which has
to be understood and adopted by all administrators needing to perform a single
mapping from a relational database to the Semantic Web. Our technique goes
one step further and uses common RDF query languages for the mapping task.
The following requirements have to be kept, for being able to use such query
languages as a mapping language.

Relational.OWL: Contrary to a common mapping, where the relational data
is directly translated into the Semantic Web, our approach passes one ad-
ditional step. First, we represent the data stored in the original relational
database in a semantic-rich format, i.e. in RDF. This step is either done
exporting the complete data and schema sets into RDF using the Rela-
tional.OWL application [4] or using the virtual database representation pro-
vided by RDQuery [3]. Please note, that both data transformations methods
are processed automatically without any human intervention. Both tech-
niques result in a Semantic Web representation of the data and schema
components of the original relational database.

Closed Query Language: We are potentially able to perform a mapping using
any of the upcoming query languages, as long as it is closed within RDF and
contains a construct similar to the CONSTRUCT clause in SPARQL (cf. [22]).
Otherwise the resulting variable bindings would have to be translated again
into RDF. We have chosen SPARQL as a representative query language,
since it is easy to understand, its syntax is based on SQL, it is as powerful
as the relational algebra in its expressiveness (cf. [20]), and will hopefully
soon be recommended as a de facto standard by the W3C.

Target Ontology: Although the Relational.OWL representation (cf. Sec-
tion 4.2) of the database is processable by virtually any Semantic Web ap-
plication, it still lacks real semantics, since the data is represented as it was
stored in the relational database, i.e. stored in tables and columns. Since we
want to assign this data a real meaning, we require a target ontology, it can
be mapped to.

4.2 Definitions

In this section we define the basic terms used for our relational database to
Semantic Web mapping approach. First, we introduce the semantic translation
of relational databases into the Semantic Web:

Definition 1 (Semantic Translation). The semantic translation
ST (RDB,ROWL) of a relational database RDB into its Relational.OWL
representation ROWL (see Definition 2 below) is an automatic translation
process, where for each RDB and its schema components, a Semantic Web
correspondent is created (cf. Section 3.1).

In this context, the Relational.OWL representation of a database is:

Definition 2 (Relational.OWL Representation). The Relational.OWL
representation of a relational database is described by ROWL(S, I), where S
is the schema representation of the database as seen in Section 3.1 and I con-
tains the corresponding data instances of the schema components described with
S.

Having created a Relational.OWL representation of the corresponding database,
we are now able to perform a mapping :

Definition 3 (Mapping). A mapping M from a relational database to the
Semantic Web is a four-tuple M(RDB,ROWL, T O,Q), with RDB being the
source database, ROWL the Relational.OWL representation of RDB, T O the
target ontology, and Q the mapping query, expressed in a (closed) query language
QL.

Contrary to the Relational.OWL representation created with an automatic se-
mantic translation, a mapping has to be stated manually using a query Q. The
mapping is correct, iff querying ROWL with Q results in one ore multiple in-
stances of T O. Hence Q has to fulfill two main properties. First, it has to be
adequate in regard to ROWL, i.e. return the desired result and secondly, the
result has to be formatted as instances of T O.

4.3 Mapping Process

The complete relational data to RDF mapping process is illustrated in Fig. 4.
It consists of two main steps, which were already introduced in the previous
sections.
First, the Relational.OWL representation of the schema and the data compo-
nents of the original data source are generated. The schema representation be-
comes thereby an instance of the Relational.OWL ontology. In turn, the data
items converted become instances of the schema ontology just created. This step
could either be performed using the Relational.OWL application [4], i.e. the
schema and data components are translated statically in a one-time process, or
using a virtual representation of that RDF model, e.g. with RDQuery [3]. The
advantage of the latter is obvious, since the data stock, on which the queries
are performed, is always up-to-date. This cannot be guaranteed using the Re-
lational.OWL application. Nevertheless, if the source database does not change
frequently, a static translation into the Relational.OWL representation could be
enough.
Having created the Relational.OWL representation of the relational database,
the second step including the actual mapping can be performed.
The RDF model just created may now be queried with an arbitrary RDF query
language. As long as the query language is closed, the resulting query response
is again within the Semantic Web, i.e. it is a valid RDF model or graph and may
then be processed by other Semantic Web applications using their own built-in
functionality for reasoning tasks.

Fig. 4. Mapping Process

Using the CONSTRUCT clause of a query language like SPARQL (cf. [22]), the re-
sulting data items can be inserted into an arbitrary RDF skeleton. This property
of the query language is vaguely comparable to an XSLT-Stylesheet [1]. If we
specify an adequate RDF skeleton, we can achieve the resulting RDF model to
correspond to an instance of the intended target ontology. The RDF skeleton in
the CONSTRUCT clause of the SPARQL query becomes hereby the pivotal part of
the actual mapping process. A sample mapping query is provided in Section 4.4.

4.4 Sample Mapping

In this section we present a sample relational data to RDF/OWL mapping using
SPARQL as our chosen mapping language, since it fulfills all of our requirements
and will hopefully be recommended as a de facto standard by the W3C soon.
Despite its novelty, SPARQL is already supported by the Jena Framework [2].
Consider a Semantic Web application developer, who requires access to the data
stored in the database introduced in Section 3.2. Since he assumes the database
schema to be quite stable, he decides to create a mapping from the relational
data model to Semantic Web objets based on the vCard ontology [12]. A pos-
sible mapping query, which gives Semantic Web applications the possibility to
access the data using its own built-in functionality and enables them to perform
common reasoning operations is given in Fig. 5.
After specifying the prefix definitions for vCard, rdf, and db in the PREFIX
clause, the skeleton of the resulting RDF objects is defined in the CONSTRUCT part
of the query. At first, a new anonymous node of type vCard:ADR is created. This
object contains the attributes vCard:Street, vCard:Locality, vCard:Pcode,
and vCard:Country and could easily be extended by further attributes either
specified in the vCard ontology or in other RDF-Schema files. The values cor-

PREFIX vCard:<http://www.w3.org/2001/vcard-rdf/3.0#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX db: <http://www.dbs.cs.uni-duesseldorf.de/RDF/address schema.owl#>
CONSTRUCT { :v rdf:type vCard:ADR;

vCard:Street ?street;
vCard:Locality ?locality;
vCard:Pcode ?pcode;
vCard:Country ?country}

WHERE {{?a rdf:type db:ADDRESS;
db:ADDRESS.ZIP ?pcode;
db:ADDRESS.STREET ?street;
db:ADDRESS.CITY ?locality;
db:ADDRESS.COUNTRYID ?x}.

{?d rdf:type db:COUNTRY;
db:COUNTRY.NAME ?country;
db:COUNTRY.COUNTRYID ?x}}

Fig. 5. Sample Mapping Query

responding to the given attributes are specified by free variables, bound in the
following WHERE clause.
The actual linkage to the original database is performed in the WHERE clause of
the SPARQL query, i.e. each of the free variables specified in the CONSTRUCT
clause is bound to a column of the original database. To be more precise, the
attributes are bound to the data instances I of the RDF representation ROWL
of the relational database. Please note, that the mapping specification is iden-
tical for a virtual RDF model like in RDQuery [3] or a static data representa-
tion, e.g. with the Relational.OWL application [4]. Being stored on two different
tables (ADDRESS and COUNTRY), the required data is joined using the ?x vari-
able (cf. [20]).
Having created a suitable mapping from the Relational.OWL representation of
the database to the target vCard ontology, the resulting data can be processed
by any Semantic Web application as usual. In Fig. 6 a sample result set of the
mapping query provided in Fig. 5 is given.

4.5 Characteristics

The major characteristics of our relational database to RDF/OWL mapping
approach are discussed in this section.

Combination of Automatic and Manual Mappings: The mapping ap-
proach presented in this paper is suitable for most relational database sce-
narios. If we have to handle with constantly changing database schemas, an
automatic mapping with Relational.OWL into the Semantic Web is the best
choice. Indeed, an automatic mapping with Relational.OWL does not add
real semantics to the RDF objects, but at least, the data is processable by
any Semantic Web application without having to update the mapping every
time the schema changes.

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:vCard="http://www.w3.org/2001/vcard-rdf/3.0#" >

<rdf:Description rdf:nodeID="A0">

<vCard:Pcode>40225</vCard:Pcode>

<rdf:type rdf:resource="http://www.w3.org/2001/vcard-rdf/3.0#ADR"/>

<vCard:Street>Universitätsstr. 1</vCard:Street>

<vCard:Locality>Düsseldorf</vCard:Locality>

<vCard:Country>Deutschland</vCard:Country>

</rdf:Description>

<rdf:Description rdf:nodeID="A1">

<vCard:Pcode>31006</vCard:Pcode>

<rdf:type rdf:resource="http://www.w3.org/2001/vcard-rdf/3.0#ADR"/>

<vCard:Street>Campus de Arrosadia</vCard:Street>

<vCard:Locality>Pamplona</vCard:Locality>

<vCard:Country>Espa~na</vCard:Country>

</rdf:Description>

</rdf:RDF>

Fig. 6. Sample Mapping Result

In many application areas, the risk of having to update the mapping is either
negligible or consciously taken into account, since data with real semantics
is required. For these cases, an additional, manual mapping from the Rela-
tional.OWL representation to a target ontology would be appropriate. This
may easily be done using a suitable query language. Please note, that all
present relational database to Semantic Web approaches require the map-
ping to be updated, whenever the schema of the database changes, whereas
our technique provides an automatic fallback for such situations.

Mapping within the Semantic Web: The complete mapping process from
the relational database to RDF objects with real semantics is performed
using Semantic Web applications. As a result, two different mapping ar-
chitectures are possible. The first and most reliable possibility is, that such
mappings are processed by small wrapper applications providing the Seman-
tic Web applications with the required target data. Taking place within the
Semantic Web, the applications may nevertheless opt to create the mapping
by themselves using their own built-in functionality.

Well-known Mapping Language(s): One of the main advantages of our ap-
proach is, that it does not require a new mapping language to be adopted,
since it is completely based on current RDF/OWL-techniques. Contrary to
approaches like [7], Semantic Web application developers needing access to
data actually stored in relational databases do not have to learn yet another
mapping language, but are able to use their preferred RDF query language,
as long as it fulfills the requirements mentioned in Section 4.1.

5 Evaluation

We have evaluated the performance of our relational database to Semantic Web
approach using RDQuery [3]. It is a wrapper system, which enables Seman-
tic Web applications to access and query data actually stored in relational
databases using their own built-in functionality. RDQuery automatically trans-
lates SPARQL and RDQL queries into SQL and is thus able to perform the rela-
tional to semantic mapping in one step. Providing an adequate mapping query,
the query is translated into SQL, the underlying relational database is queried,
and the results are returned in the required format. RDQuery is thereby able
to recognize the basic operations of the relational algebra within the SPARQL
query (cf. [20]) and to translate them into SQL. Hence, most of the workload,
including join and projection operations, is not processed directly by RDQuery,
but passed to the underlying database with the generated SQL query.
Following the example shown in Section 4.4, we have created 18 dif-
ferent queries which map relational data to the vCard ontology (cf.
http://www.w3.org/TR/vcard-rdf). We have categorized these queries into three
different classes, depending on their complexity referring to the relational alge-
bra (i.e. selection, projection, and join). Each of the categories contains six
of the queries. We first measured the time required by RDQuery to translate the
queries into SQL and then the time passed for the complete mapping process, in-
cluding query translation, query execution via JDBC using a MySQL database,
and the data translation back into RDF. The database, the queries were tested
on is based on the northwind database and contains eight tables with a total of
about 3000 tuples. Unlike the first measurement, the second depends on various
factors, like network or database performance, which can hardly be influenced
by RDQuery. In Table 1, the average execution time of the query translations
and mapping processes for each mapping category is given.

Execution time [s]
SPARQL Query Query Translation mapping process

Selection 0.020 0.050
Projection 0.018 0.052
Join 0.023 0.067

Table 1. Average Execution Time for a SPARQL Mapping

The performance results show, that the execution time of both, the query trans-
lations and the complete mapping process are barely measurable, lying most of
them far below 100 milliseconds. Even the more complex join operations were
translated and executed at an average of 67 milliseconds. Consequently, our map-
ping relational data to Semantic Web approach enables applications to access
legacy data stored in relational databases in real-time, as if that data would
actually be part of the Semantic Web.

6 Discussion and Future Work

In this paper we have described how to map data from relational databases into
a real RDF representation using a Semantic Web query language. To use such
query languages for a mapping purpose, three main requirements have to be
met. First, the relational database (i.e. its schema and data components) has
to be described using the Relational.OWL ontology. This automatic semantic
representation of the relational database can then be queried using any RDF
query language. If the adopted query language is closed, the resulting RDF
graph can be specified to match the the target ontology, the original database
shall be mapped to.
The approach presented in this paper is based on mapping the Relational.OWL
representation of relational databases manually into Semantic Web objects
with real semantics. We are thus planning to analyze, whether existing (semi-
)automatic schema and ontology matching approaches (cf. [10, 23]) could provide
reasonable results in matching an existing relational schema to a target ontology.
The expressiveness within the mapping process depends directly from the query
language used, i.e. a more complex mapping cannot be stated with an elementary
query language. For instance, we showed in [20], that all the basic operations
of the relational algebra can be expressed with SPARQL. Nevertheless, its has
some considerable limitations, since it does not support aggregations or nested
queries. A further restriction concerns data manipulation or data updates, which
is still not supported by most RDF query languages. We are currently analyzing,
whether SPARQL could be extended to support such operations for enabling Se-
mantic Web applications to manipulate the data actually stored on the relational
database.

References

1. XSL Transformations (XSLT). http://www.w3.org/TR/1999/REC-xslt-19991116,
1999.

2. Jena - A Semantic Web Framework for Java. http://jena.sourceforge.net/, 2006.

3. RDQuery. http://sourceforge.net/projects/rdquery/, 2006.

4. Relational.OWL. http://sourceforge.net/projects/relational-owl/, 2006.

5. Yuan An, Alexander Borgida, and John Mylopoulos. Inferring Complex Seman-
tic Mappings Between Relational Tables and Ontologies from Simple Correspon-
dences. In CoopIS, DOA, and ODBASE, OTM Confederated International Con-
ferences, Cyprus, Part II, volume 3761 of LNCS, pages 1152–1169. Springer, 2005.

6. Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scientific
American, May 2001.

7. Christian Bizer. D2R MAP-A Database to RDF Mapping Language. In
WWW2003, The Twelfth International World Wide Web Conference, Budapest,
Hungary, 2003. poster presentation.

8. Christian Bizer and Andy Seaborne. D2RQ -Treating Non-RDF Databases as
Virtual RDF Graphs. In The Semantic Web - ISWC 2004: Third International
Semantic Web Conference, Hiroshima, Japan, 2004. poster presentation.

9. Scott Boag, Don Chamberlin, Mary F. Fernández, Daniela Florescu, Jonathan
Robie, and Jérôme Siméon. XQuery 1.0: An XML Query Language.
http://www.w3.org/TR/2005/CR-xquery-20051103/, 2005. W3C Candidate Rec-
ommendation.

10. AnHai Doan, Jayant Madhavan, Pedro Domingos, and Alon Y. Halevy. Ontology
Matching: A Machine Learning Approach. In Steffen Staab and Rudi Studer, ed-
itors, Handbook on Ontologies, International Handbooks on Information Systems,
pages 385–404. Springer, 2004.

11. Stephen Harris and Nigel Shadbolt. SPARQL Query Processing with Conventional
Relational Database Systems. In Web Information Systems Engineering - WISE
2005 Workshops, New York, NY, USA, Proceedings, volume 3807 of Lecture Notes
in Computer Science, pages 235–244. Springer, 2005.

12. Renato Iannella. Representing vCard Objects in RDF/XML.
http://www.w3.org/TR/vcard-rdf, 2001. W3C Note.

13. Gregory Karvounarakis, Vassilis Christophides, Dimitris Plexousakis, and Sofia
Alexaki. Querying RDF Descriptions for Community Web Portals. In 17èmes
Journées Bases de Données Avancées, BDA’2001, Agadir, Maroc, pages 133–144,
2001.

14. Deborah L. McGuinness and Frank van Harmelen. OWL Web Ontology Language
Overview. http://www.w3.org/TR/2004/REC-owl-features-20040210/, 2004.

15. Sergey Melnik. Storing RDF in a Relational Database. http://www-
db.stanford.edu/ melnik/rdf/db.html, 2001.

16. Zhengxiang Pan and Jeff Heflin. DLDB: Extending Relational Databases to Sup-
port Semantic Web Queries. In PSSS1 - Practical and Scalable Semantic Systems,
Proceedings of the First International Workshop on Practical and Scalable Seman-
tic Systems, volume 89 of CEUR Workshop Proceedings, 2003.

17. Cristian Pérez de Laborda and Stefan Conrad. A Semantic Web based Identifica-
tion Mechanism for Databases. In Proceedings of the 10th International Workshop
on Knowledge Representation meets Databases (KRDB 2003), Hamburg, Germany,
September 15-16, 2003, volume 79 of CEUR, pages 123–130. RWTH Aachen, 2003.

18. Cristian Pérez de Laborda and Stefan Conrad. Querying Relational Databases
with RDQL. In Rainer Eckstein and Robert Tolksdorf, editors, Berliner XML
Tage, pages 161–172, 2005.

19. Cristian Pérez de Laborda and Stefan Conrad. Relational.OWL - A Data and
Schema Representation Format Based on OWL. In Second Asia-Pacific Confer-
ence on Conceptual Modelling (APCCM2005), volume 43 of CRPIT, pages 89–96,
Newcastle, Australia, 2005. ACS.

20. Cristian Pérez de Laborda and Stefan Conrad. Bringing Relational Data into
the Semantic Web using SPARQL and Relational.OWL. In Semantic Web and
Databases, Third International Workshop, SWDB 2006, Co-located with ICDE,
Atlanta, USA, April 2006. IEEE Computer Society, 2006.

21. Johan Petrini and Tore Risch. Processing Queries over RDF views of Wrapped
Relational Databases. In 1st International Workshop on Wrapper Techniques for
Legacy Systems, WRAP 2004, Delft, Holland, 2004.

22. Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language for RDF.
http://www.w3.org/TR/2006/WD-rdf-sparql-query-20060220/, 2006. W3C Work-
ing Draft.

23. Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic
schema matching. VLDB J., 10(4):334–350, 2001.

24. Andy Seaborne. RDQL - A Query Language for RDF. http://www.w3.org/
Submission/2004/SUBM-RDQL-20040109/, 2004.

