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ABSTRACT

The analysis of time series is an important field of research in data
mining. This includes different sub areas like trend analysis, outlier
detection, forecasting or simply the comparison of multiple time
series. Clustering is also an equally important and vast field in time
series analysis. Different clustering algorithms provide different
analysis aspects like the detection of classes or outliers. There are
various approaches how to apply cluster algorithms to time series.
Previous work either extracted subsequences or feature sets as an
input for cluster algorithms. A rarely used but important approach
in clustering of time series is the grouping of data points per point in
time. Based on this technique we present a method which analyses
the transitions of time series between clusters over time. We evalu-
ate our approach on multiple multivariate time series of different
data sets. We discover conspicuous behaviors in relation to groups
of sequences and provide a robust outlier detection algorithm.

1 INTRODUCTION

Time series data is collected in various domains. Not only the behav-
ior of users on different platforms, but also the tracking of vehicles
and objects or the recording of financial or weather data can be
displayed as time series. For further analysis, the various data types
can be converted into numerical (mostly discrete) values so that
sequences of numerical vectors are derived. These can then be pro-
cessed in a variety of ways. Information can be obtained through
analyses such as clustering, prediction or comparison of time series
and different outlier detection methods.

Depending on the context, different aspects can be relevant for the
user. For example, not all clustering algorithms consider the same
types of clusters, and outlier detection techniques do not always
address the same types of outliers. In some cases, very special so-
lutions have to be found for specific problems, whereby there are
many algorithms that can be applied to a wide range of application
areas.

In this paper we focus on databases of multivariate time series
with discrete values, same length and equivalent time steps. We
detect anomalous subsequences with regard to groups of time se-
ries of the given database. Therefore we cluster the multivariate
data of all time series per timestamp and analyze the stability of all
subsequences over time. Thereby we call the resulting clustering
over-time clustering. In Figure 1 an example for such a clustering
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is displayed. For the sake of simplicity, only univariate time series
are plotted. Since the data is clustered independently at each point
in time, there is at first no time-related connection between the
clusterings.

There are several proposals for clustering time series depending on
the application. Some methods cluster the time series of a database
as a whole [10] [12] [19], extract feature sets first [22], or consider
subsequences of a single time series only [3]. However, these are
not suitable when it comes to detecting irregularities or gathering
information per time point.

Outlier detection in time series is in most cases not based on cluster-
ing. Because of various underlying data such as single or multiple
time series with uni- or multivariate data points and different defi-
nitions of what an outlier is, there are several approaches to their
identification. Some papers consider data points [1] or subsequences
[15] that are anomalous with regard to a single time series [5] [17],
such as peaks. Others look for so called change points [6] [16], that
imply that the course of the considered time series significantly
changes from that point on. Yet others analyse data from several
time series that are very similar, such as sensor data, and detect
irregularities in relation to the entire data set [1] [11] [13]. Finding
these abnormalities usually presupposes that either the course of a
single time series follows consistent patterns or that the courses of
several time series are highly correlated.

In this paper we assume that the exact course of the individual time
series is not important, but the trend which groups of sequences
follow. By anomalies we denote subsequences that deviate from
one trend and therefore cannot be assigned steadily to a group of
sequences. In that case, we say that the sequence possesses a weak
stability. We present an algorithm that identifies such unstable
sequences in a database of multivariate time series and is robust
against missing data points.
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Figure 1: Example for a time series over-time clustering. The
blue color indicates stable clusters while red stands for insta-
bility.



2 RELATED WORK

Anomaly detection in time series is a wide field of research. It can
be distinguished in the detection of outliers within a single time
series and the detection of outliers in multiple time series. Outliers
in single time series are usually categorized in two classes:
Additive outliers, which represent surprisingly large or small values
in a short period. In case additive outliers occur consecutively they
are often summarized as additive outlier patches.

Innovational outliers are characterized by their impact on subse-
quent observations. Additionally the influence of innovational out-
liers can grow with time.

There are also several different categories of outliers, which can
be described as a mix of both main classes. For example, additive
outliers which cause a move of following observations to a new
level are called level shift outliers and have a permanent impact
on the ongoing time series. In case the influence of the level shift
outlier is decreasing over time, it is called a transient change outlier.
Additive outliers, which occur periodically are named seasonal ad-
ditive outliers.

Additive and innovational outliers are often identified with exten-
sions of autoregressive-moving-average (ARMA) models [2] [18].
Other techniques include the use of decomposition methods such
as STL, a seasonal-trend decomposition procedure based on LOESS
[7]. Yet other methods evaluate derivatives of the dynamic time
warping (DTW) [20] similarity in order to detect anomalies.

The detection of outliers in multiple time series is handled differ-
ently. Methods of this kind are often using the peers of a time series
to determine whether it is anomalous or not. Beside other tech-
niques, recent approaches use Probabilistic Suffix Trees (PST) [21]
and Random Block Coordinate Descents (RBCD) [23] in order to
detect outliers. However, while these approaches focus on the devi-
ation of one time series to the others, we focus on the behaviour of a
time series compared to its peers. More concretely, we assume that
a time series which has a similar development to a group of other
time series over a subsequence is expected to move on with the
same group. Therefore we first cluster per point in time and then
analyse the transition of time series regarding these clusters. This
is realized by the analysis of cluster transitions of time series over
time. Transitions of this kind are also analysed in cluster evolution
methods. Landauer et al. [14] makes use of such a method in order
to calculate an anomaly score for a single time series in a sliding
window. In contrary to Landauer et al. we relate to multiple time
series. The analysis of the time series behavior not only reveals
new kinds of outliers but also detects different types of additive
and innovational outliers.

This approach is very different from clustering whole time series
or their subsequences, since the outlier detection would rely on
the single fact whether a sequence is assigned to a cluster or not.
Such an approach would not take the cluster transitions of the time
series into account, which can be an expressive feature on its own.
Hence, our approach detects anomalous subsequences, although
they would be assigned to a cluster in a subsequence clustering.
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3 FUNDAMENTALS

In order to create a good basis of knowledge to avoid later mis-
understandings, we will provide some definitions which our work
is based on. As these terms are used in many different areas, it is
useful to explain which interpretations are considered in this paper.

Definition 3.1 (Time Series). A multivariate time seriesT = o0y, ..., 0z,
is an ordered set of n real valued data points of arbitrary dimen-
sion. The data points are chronologically ordered by their time of
recording, with t; and t,, indicating the first and the last timestamp,
respectively.

Definition 3.2 (Data Set). A data set D = Ty,...,Tp, is a set of m
time series of same length and equal points in time. The set of data
points of all time series at a timestamp ¢; is denoted as Oy, .

Definition 3.3 (Subsequence). A subsequence Ty, 1, | =0y, 5. 04,1
with j > i is an ordered set of successive real valued data points
beginning at time ¢; and ending at ¢; from time series Tj.

Definition 3.4 (Cluster). A cluster Cy, ; C Oy, at time t;, with
j € {1,...,q} being a unique identifier (e.g. counter), is a set of
similar data points, identified by a cluster algorithm or human. This

means that all clusters have distinct labels regardless of time.

Definition 3.5 (Cluster Member). A data point oy, ; at time ¢;, that is
assigned to a cluster Cy, j is called a member of cluster Cy, ;.

Definition 3.6 (Noise). A data point o, ; at time ¢; is considered as
noise, if it is not assigned to any cluster.

Definition 3.7 (Clustering). A clustering is the overall result of a
clustering algorithm or the set of all clusters annotated by a human
for all timestamps. In concrete it is the set { = {C,,1, ..., Cr,,,q} of
all g clusters.

In Figure 2 an example for the above definitions can be seen. The
data points of a data set containing five time series (T, T, T¢, Ty,
Te) are clustered for the timestamps ¢;, t; and t;.. For simplicity, all
data points of a time series T; are denoted by the identifier I.

In t; the data points 0y;,4, 04, of time series T, and T}, are clus-
ter members of cluster Cy, ;. The data point o, ¢ is marked as
noise, as it is not assigned to any cluster in ¢;. In total, the shown
clustering consists of five clusters. It can be described by the set

{ = {Ct,-,l’ Ct,—,u, Ctj,v, Ctj,f, Ctk,g}-

\
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Figure 2: Example for the transitions of time series T, .., T
between clusters over time.
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4 METHOD

After the clarification of important foundations, the basic idea of the
algorithm is described. Therefore further terms have to be explained
before.

Let Cy,;,q and Ctj,b be two clusters, with t;, t; € {t1, ...t }. First, we
introduce the term temporal cluster intersection for the purpose of
measuring the stability of a time series:

Ni{Ct;,a:Cr; 0} ={T1 1 04,1 € Ctya Aoy, 1 € Cyy )

with [ € {1,...,m}. The result is the set of time series that are
assigned to both of the clusters under consideration. This means
all sequences that were grouped together at time ¢; and t;. The
transition of a time series from #; to t; can now be described by the
proportion of cluster members from the corresponding cluster in ¢;
who migrated together into the cluster in ;:

ifC,i,a =0
p(Ct;,as Ctj,b) =19 1C1.aNeCe; b

else
|Cti.a |

with t; < t;. In Figure 2 an example for transitions of time series
between clusters is sketched. There, the proportion for C;, ; and
Ct; v would be

(Ta Ty}l 2

=-=1.0.
l{or;.a:01,p31 2

P(Cr, 1, Cry0) =
This proportion can be used to measure the stability of a sequence
with a subsequence score. It is defined as

j-1
1
sub_score(Tti,tj’l) = ZP(Cid(Utv,l)s cid(o,j,l))
=i

o=i

with [ € {1,...,m}, k € [1,j — i] being the number of timestamps
between t; and t; where the data point exists and cid, the cluster-
identity function

0 if the data point is not

cid(og,,1) = assigned to any cluster

Ct,a else

returning the cluster which the data point has been assigned to in ¢;.
The function returns an empty set, either if the object is classified
as noise or if it does not exist at the considered time. Note, that the
subsequence score is normalized to [0, 1] by k, as the proportion p
is a percentage between 0 and 1, as well.

In the example of Figure 2, the score of time series T, between time
points t; and t; would be:

1
sub_score(Ty; 1,.,a) = 3 (1.0 + 1.0) = 1.0.

A notable characteristic is, that the score is always 0, if the last data
point of the considered subsequence is marked as noise. However,
this circumstance does not lead to any handicaps in most cases as
all partial sequences of these subsequences are treated normally.
Nevertheless, the handling of sequences with an endpoint that is
labeled as noise will be analyzed in more detail later on.

For now describing the concrete procedure of detecting conspicu-
ous sequences, we first provide a vague definition of them:

Definition 4.1 (Anomalous Subsequence). A subsequence Ty, ;; 1 is
called anomalous, if it is significantly more unstable than its cluster
members at time ¢;.

With the help of the subsequence score which measures the sta-
bility of a subsequence, anomalous ones can now be distinguished
by comparing the stability of grouped subsequences at a given time
point. Every possible subsequence gets an outlier score indicating
the probability of being anomalous, by calculating the deviation of
its stability from the best subsequence score of its cluster. A formal
description of the best subsequence score can be given by:

best_score(t;, Ct;,a) = max({sub_score(Tti,tj,l) | cid(otj,l) =Ct;,a})
The outlier score of a subsequence is then calculated as follows:
outlier_score(Tti’,j,l) = best_score(t;, cid(otj’1))—sub_score(Ttl.’tj’l)

As the best score lies between 0 and 1, an outlier score of 100%
can only be achieved in completely stable clusters. The smaller the
best score of the considered cluster is, the smaller is the greatest
possible outlier score.

Regarding the example in Figure 2, the time series T; would get the
following outlier_score between time points t; and t.:

outlier_score(Ty, 1, 4) = 1.0 = (0.5- (0.5 + 1.0)) = 0.25

With the outlier score, now a more precise definition of an outlier
can be given.

Definition 4.2 (Outlier). Given a threshold 7 € [0, 1], a subsequence
Tt ;.1 is called an outlier, if its probability of being an outlier is
greater than or equal 7. That means, if

outlier_score(Ty, ;. 1) 2 7 .

t,
Although 7 is a constant, it can be interpreted as a dynamic thresh-
old. That is, because the greatest possible deviation from the best
subsequence score — and thus the greatest outlier score — depends
on the best score of the considered cluster. Clusters with low sta-
bility have a lower probability of containing an outlier than stable
ones, since all their cluster members show irregularities and that
represents a pattern of instability. In this context, the small subse-
quence score is thus not conspicuous.

Intuitive outliers from the over-time clustering that were marked
as noise get a special treatment. Subsequences that consist entirely
of noise data points are automatically identified as outliers. Since
subsequences whose last data point is labeled as noise are not as-
signed to a cluster from which the best score can be calculated, no
outlier score can be determined for them. Therefore, they are not
included in the regular outlier calculation. In the following we will
differentiate between anomalous subsequences, intuitive outliers and
noise.

Take another look at the case where the last element of an examined
subsequence Ty, ;. ; is marked as noise. Suppose the subsequence
T},,1,-,,1 gets a high outlier score and is detected as outlier. Then
one would expect that the subsequence under consideration Ty, ;; s
would be identified as an outlier as well. This will only be the case,
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Figure 3: Two dimensional experiment on the EIKON Financial Data Set with 7 = 0.6, minPts = 2 and € = 0.15. The colors
indicate cluster belongings, whereby grey objects represent outliers. Circles are outliers by distance and boxes are intuitive

outliers, as well. Red color or font indicates noise.

if the previous data point was categorized as noise as well and the
sequence was therefore recognized as an intuitive outlier. However,
for the sequence Ty, ;, | with k > j, which at the last time point t;
is assigned to a cluster again for the first time this would also be
the case. Thus in the end Tyt would be covered.

Yet a marginal case is when a data point is labeled as noise at the
last time of the entire time series. In this scenario, a sequence with
end time t,;,; would never be detected as an outlier if it is not marked
as noise in ty;—1.

Remark. The stability is not only influenced significantly by a
small sample size when considering constant data points [4]. When
examining the over-time stability, a small sample size leads to high
sensitivity to cluster transitions, as well. As more data points are
considered, the simpler it is to draw meaningful conclusions about
the stability.

5 EXPERIMENTS

In order to evaluate the presented method, we performed several
experiments on different real world data. We also present two artifi-
cially generated data sets which are used to illustrate the handling
of some marginal cases. In order to cluster the data per point in
time, we used DBSCAN [9] with adapted parameters.

5.1 EIKON Financial Data Set

Eikon is a set of software products released by Refinitiv (formerly
Thomson Reuters Financial & Risk). It contains a database with
financial data of thousands of companies for the past decades. For
illustration reasons we randomly selected thirty companies and
two features. The selected features are a figures which were taken
from the balance sheet of the company. In economics it is common

to normalize these figures by the companies’ total assets in order to
make it comparable to other companies. Beside this, we normalized
the features with a min-max normalization. The clustering was done
with DBSCAN and € = 0.15, minPts = 2 as parameters. The outlier
detection parameter was chosen to be 7 = 0.6. In Figure 3 one
can see the illustrated results. The presented technique found two
outlier subsequences. The first, which is labeled as GM is detected
from the year 2008 until 2009. This is because GM is noise in the
year 2008, which leads to a subsequence score of 0. In 2009 GM
merges with a cluster, which has a high reference score. The second
outlier detected is the subsequence T}, KR- It is detected as
an intuitive outlier.

2013,

5.2 Airline On-Time Performance Data Set

The Airline on-time performance data set [8] was originally col-
lected by the U.S. Department of Transportation’s Bureau of Trans-
portation Statistics. It contains records of 3.5 million flights. Every
flight has a set of 29 features, such as the departure delay, the delay
reason, the arrival delay and the airline which processed the flight.
In order to detect anomalies in this data set, we constructed a time
series for every airline by calculating the average of their features
for every day. Before applying our technique, we normalized the
data with the min-max normalization and clustered it with DB-
SCAN. Every observation represents a flight of an airline. In order
to illustrate the results we executed our algorithm to one feature,
namely the flight distance. We applied DBSCAN for eight time
points with the following parameters: minPts = 3 and € = 0.03.
Additionally we chose 7 = 0.4. The result can be seen in Figure 4.
The figure shows two kinds of outliers: Intuitive outliers and out-
liers which were identified by their distance to a reference time
series. Since the time series which is labeled with the points a, b
and c has a large distance to other time series it is detected as an
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Figure 4: One dimensional experiment on the Airline On-
Time Performance Data Set with 7 = 0.4, minPts = 3 and
€ = 0.03. Black sequences represent anomalies, while white
dashed ones stand for intuitive outliers. The color of the dots
emphasize which cluster the data points are assigned to. Red
dots represent noise.

intuitive outlier from a to b. Due to this, the time series’ accumu-
lated subsequence score is zero and thus it is also detected as an
outlier at the last time stamp c. From point a to b it is not detected
as an outlier by it’s distance to the reference subsequence score,
since the neighborhood of the sequence at time point 8 have also a
low stability score. Regarding the time points 1 to 8 and the objects
in the neighborhood, there are at most two peers which remained
together. The subsequence labeled with d and e is a good example
for the presented method. It illustrates the detection of outliers by
the change of cluster neighbors of the subsequence.

5.3 Simulated Data

In order to test our method in a targeted manner, two experiments
were performed on simulated data. Both a univariate and a multi-
variate data set with two features are considered. In both cases, a
time span of 8 time points is examined.

The one-dimensional data set was generated so that initially four
starting points (for four groups) were selected. In addition, the
maximum deviation from the centroid and the number of members
were chosen for each group. The centroids were then calculated
randomly for each time point, whereby the distance of the centroids
of a cluster of two successive time points could not exceed 0.06.
After generating the normal data points, 5 outlier sequences were
randomly inserted. The starting points were chosen randomly and
the distance between two consecutive points could not be greater
than 0.3. For all points, care was taken to ensure that they were
between 0 and 1.

As shown in Figure 5, anomalous sequences from five time series
have been found. Regarding the first time stamp the first and second
black line show time series that are entirely recognized as conspicu-
ous ones. Since their data points often switch between being noise
(red dots) and different cluster members, this result is meaningful.
Between time point 6 and 7 one additional black line in added. This
can be explained by the stability of the sequence’s cluster at time 7.
All its cluster members migrate together from time point 6 to 7, so
that an outlier is very conspicuous.

1.0

Featurel

Time

Figure 5: Illustration of the detected outliers on the simu-
lated one-dimensional data set with 7 = 0.55, minPts = 3
and € = 0.05. Black sequences represent anomalous subse-
quences, while white dashed ones stand for intuitive out-
liers. The color of the dots emphasize which cluster the data
points are assigned to. Red dots represent noise.

Looking at the completely randomly generated time series with
the uppermost noise point at time 2, it is noticeable that it was not
recognized by our algorithm. This is due to the fact that the purple
cluster at time 3 and the turquoise cluster at time 5 do not have
a high stability and the deviation of the sequence from the best
possible score is therefore not very large. In the last time points,
the time series migrates stably with the yellow cluster, so that it
does not behave uncommonly.

If the data points of a time series change from one point in time to
another from a cluster to noise, they are not initially interpreted as
conspicuous. This is a problem if the time series remains as noise
as the time at which it split from the cluster is not recognized as
an intuitive outlier. This behavior can for example be seen in the
striped line regarding the first time stamp. Between the times 6 and
7, the sequence was not detected as an outlier.

The second data set was created as follows: First, three starting
points as centroids and the number of members of the three clusters
were chosen. The maximum deviation of two consecutive centroids
was set to 0.05 and that of the member data points to the centroid
was set to 0.1. One time series was assigned to each group, which
was allowed to deviate from the centroid by up to 0.25. Finally, two
time series with completely random data points were added, so that
a total of 5 outlier sequences should be noticeable. Here, too, we
made sure that all data points are between 0 and 1 for each feature.
In Figure 6 the results for an over-time clustering made by DBSCAN
with minPts = 4 and € = 0.11 and an outlier threshold of 7 = 0.5
are shown. The time series 16, 37, 48 are generated with higher
deviation and 49 and 50 completely random. It can be seen that all
these time series were found by our algorithm as outliers (grey).
Since the data points of these time series often are outliers as well
as change their cluster members, this is a correct result. However,
the first two time points are assumed to be normal for time series
16. This is desired too, as it moves stable with its cluster members
at this time.

Although the data points of 42, 45, 46 and 47 split from their cluster
members in time point 4, they are not identified as outliers. Since
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Figure 6: Illustration of the detected outliers with 7 = 0.5, minPts = 4 and € = 0.11 on the artificially generated data two-
dimensional set. The colors indicate cluster belongings, whereby grey objects represent outliers. Circles are outliers by distance
and boxes are intuitive outliers, as well. Red color or font indicates noise.

they migrate together and even merge back to their former cluster
members in time point 5, their behavior is not conspicuous. The
sequence 42 is identified as anomalous between time points 1 and
2 (turquoise cluster), since all its cluster members migrated com-
pletely stable from time point 1 to 2.

In total, the following outlier sequences can be read from Figure 6:
T3,8,16> T1,2,42> T1,7,37, T1,8,48, T1,8,49, T1,8,50. All are justified and
correspond to the desired result. There is one striking observation,
though: Although 37 is conspicuous over the entire period, it is
only found as outlier between time 1 and 7. The reason for this is
that the marginal case mentioned in Section 4 has occurred. Since
the data point of the time series was classified as noise at the very
last point in time, but not at the time before, the sequence is not
found by our algorithm.

6 CONCLUSION & FUTURE WORK

In this work we presented a robust outlier detection algorithm for
multiple multivariate time series. By analyzing the cluster transi-
tions of time series over time, we are able to identify anomalous
sequences. Instead of using sliding windows, our method performs
an analysis of all possible subsequences. The shown results are
sound and enable a new field of research. However, there are still
some interesting aspects which may be examined in future work.
The most important issue is the determination of the outlier detec-
tion parameter 7. We assume an interdependence of 7 and hyperpa-
rameters that are used for the clustering algorithm. Further not all
intuitive outlier sequences have to be conspicuous in regard to the
time series database. Considering the deviation of time series can
lead to an enhanced analysis of those. Finally, it could be useful to
identify whole outlier clusters. Therefore a cluster score could be
computed and evaluated.
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