Clustering of Time Series Regarding Their
Over-Time Stability

1% Gerhard Klassen
Department of Computer Science
Heinrich Heine University
Diisseldorf, Germany
klassen@hhu.de

Abstract—The clustering of time series data is still a challeng-
ing task. There are different approaches which consider either
multiple time series or a single one. While some interpret the
whole sequence as one feature vector, others examine subse-
quences or extract relevant features first. Because of these various
perspectives, very different statements result. In this paper,
we present the clustering algorithm C(OTS)? for multivariate
time series data sets, that delivers a clustering per time point.
It not only optimizes the quality of the clusters regarding
intuitive demands, such as the spatial closeness of objects to
their neighborhood within a cluster, but also the stability over
time. Additionally, it can easily handle missing data points. The
algorithm is of benefit whenever a cohesion of groups of time
series can be assumed. One advantage is, that it requires only
one parameter. Our experiments on different synthetic and real
world data sets show, that our method works reasonable and
fulfills the intention of finding temporal stable clusters without
presupposing that the exact courses of the time series resemble.

Index Terms—Time Series Analysis, Clustering Methods,
Unsupervised Learning.

I. INTRODUCTION

The analysis of sequentially registered data, so called time
series, has strongly grown in interest over the past years, as
there are more and more data sources for temporal data, such
as online shops, IoT devices or medical sensors. The research
field, in which databases of multiple multivariate time series
are considered, often focuses on the task of classifying these
or parts of them to investigate different properties. In many
cases, the desired classes are not known beforehand, so that
clustering algorithms need to be used. Various approaches
consider the whole time series as a vector or extract feature
vectors first. Some make use of a decomposition into seasonal,
trend and other components.

In this paper, we present C(OTS)?, a clustering algorithm
for multivariate time series data, that clusters the data points
per timestamp without missing the temporal context. The
presented idea is based on two connection factors: one which
expresses the connection factor of one object to another at
a certain timestamps, and the other including the temporal
context. With the help of these factors and a sliding window,

978-1-7281-2547-3/20/$31.00 ©2020 IEEE

2" Martha Tatusch
Department of Computer Science
Heinrich Heine University
Diisseldorf, Germany
tatusch@hhu.de

37 Stefan Conrad
Department of Computer Science
Heinrich Heine University
Diisseldorf, Germany
stefan.conrad @hhu.de

we are able to construct a graph which describes the distance-
and time-based cohesions. Its connected components represent
the resulting clusters. The basic intention of C(OTS)? is the
detection of clusters that are stable over time. The intuitive
definition of compact clusters, where cluster members have a
low distance to each other, is thereby mostly maintained. The
maximization of the so called over-time stability does not force
unintuitive clusters that are spread over the feature space. Still,
it has a significant impact on the resulting clusters. Since the
temporal components can easily be removed from the cluster
calculation, the algorithm can also be used for clustering non-
temporal data. Figure 1 shows two examples of clusterings
provided by C(OTS)2.

In contrast to approaches like the detection of Moving
Clusters [1], our assumption is, that time series might change
their cluster members over time and that this transition would
consist of important information. Therefore we build a foun-
dation for further analysis, whereby the detection of outliers
is already partly included as our clustering algorithm is able
to handle distance- and time-based noise.

Besides the use cases of tracking topics in online forums or
the analysis of customer’s purchasing behavior, our algorithm
is useful whenever it can be assumed that there are groups
of time series that behave in a similar way over time. In
finance for example, the identification of misstatements re-
garding the annual financial statements of companies is of
great interest. One approach is to interpret these statements
as anomalous points with regard to a common behavior. This
might be described by the behavior of other companies’
financial statements that showed a similar behavior over time.
With C(OTS)? these groups and possibly even the outliers
may be identified and a solid foundation for further analysis
could be provided. Another example is the analysis of the
effectiveness and tolerance of medication regarding different
patients. Every human body responds different to different
medications. Thus, the formation of groups of patients whose
bodies react similar to the drugs, can be assumed. However,
it is possible that patients change their groups over time due
to different circumstances, for example simply because their
body is unique and responds different to the medication than
its former cluster members. The group transitions of patients
can be an indicator for an anomaly or the necessity of a

*2%1

Fig. 1: Examples for resulting clusterings by C(OTS)?, when
only one timestamp is considered. Different colors indicate
different cluster belongings.

change in medication, and might help in the prediction of
future disease progression. With C(OTS)? this behavior can
be discovered.

II. FUNDAMENTALS

Before we explain our method in detail in the next section,
we clarify some important terms. Generally we stick to
the definitions of Tatusch et al’s paper [2], which deals
with the detection of outliers with the help of a time series
clustering per timestamp. We only make small adaptations and
introduce one new definition. In addition to the mathematical
statements, the most important definitions are illustrated in
Figure 2.

Definition 1. Time Series
A time series T; = (07,1, ...,01,5) is a tuple of n data points
with 0;; € R%, d > 1. The data points are chronologically
ordered by their time of recording.

Definition 2. Time Series Data Set
A time series data set D = {T1,...,T;,} is a set of m time
series with equivalent points in time. The set of data points
of all time series at a timestamp ¢; is denoted as Oy,.
Different lengths and missing values are acceptable, as long
as the time points can be mapped to a uniform scheme.

Definition 3. Subsequence
A subsequence T}, 1 = (01,i, ..., 01,x) With ¢ > k is a tuple of
successive data points from time series 7; beginning at time
t; and ending at ty.

Definition 4. Sliding Window
A sliding window of size s is a set of timestamps and is
denoted as w; s = {t,_ EEINTR ti, ..., 1+L* 1 } In case a
timestamp is not represented by any time serles of the data
set, it does not occur in the set.

Definition 5. Cluster
A cluster Cy, ; € Oy, at time ¢;, with |Cy, ;| > 2 and
j €{1,...,q} being a unique identifier (e.g. counter), is a set
of similar data points, identified by a cluster algorithm.

. Time Series T, .

¥

,,,,,, sequence T, 5 Clithter Member

-5
/\OV/V
O/ |

0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 10 05 1. >
t : t . ty . i s 4
¥ .
Sliding Window w; 5

('lueler

d

Sliding‘* Window w5

Fig. 2: Illustration of the most important definitions. Note, that
a black arrow represents the development of a cluster, while
a black line between objects of a time series represents the
development of the sequence.

Definition 6. Cluster Member
A data point o0;; from time series 7; at time t;, that is
assigned to a cluster Cy, ; is called a member of cluster CY, ;.
Definition 7. Noise
A data point o;; from time series 7} at time ¢; is considered
as noise, if it is not assigned to any cluster.

Definition 8. Clustering
A clustering is the overall result of a clustering algorithm for
all timestamps. In concrete it is the set { = {C1 1, ...,Cy q} U
Noise.

III. RELATED WORK

With the growing amount of time-dependent data in many
applications, researches have presented different approaches
to classify time series. The Time Series Classification Repos-
itory (TSCR) [3] established by the University of California,
Riverside (UCR) and the University of East Anglia (UEA) led
to a growth in the number of algorithms for time series clas-
sification problems. Besides the hosting of suitable data, the
repository also offers a performance comparison on algorithms
to the data. The methods presented in the TSCR target the
identification of groups, so called classes, and the assignment
of objects to those. Therefore, in contrast to our approach,
these techniques regard the time series as a whole, so that
the classification task refers to the entirety of the sequences.
Referring the classification problems presented in the UCR this
is reasonable, especially since Eamonn Keogh and Jessica Lin
remarkably argued that clustering of time series subsequences
is “meaningless” [4]. The problem we are tackling in this paper
is different. Instead of identifying the class of a time series,
we are interested in the behavior of time series in relation
to other sequences. Especially changes in their behavior can
contain significant information. This problem is related to
cluster evolution over time [1], [5] with the difference, that
instead of recognizing earlier clusters at later timestamps, our
approach targets a clustering as a basis for the identification

The final authenticated publication is available online at https://doi.org/10.1109/SSCI47803.2020.9308516

of anomalous subsequences. Therefore we introduce the term
time series adaptability which reflects a time series’ ability
to adapt to other sequences, that means its average similarity
in relation to the data set. It may also be understood as the
degree of team spirit of a sequence. Besides the tracking of
topics in online forums, detecting outliers in financial data or
fMRI scans, there are various other applications which could
profit by our clustering algorithm.

The idea of using graphs in clustering algorithms is not
new. In 2003, Stuetzle [6] proposes a graph-based clustering
algorithm based on runt test for multimodality [7]. The clusters
are identified by breaking edges in the minimal spanning
tree of the regarded data set. Other graph-based clustering
approaches make use of Delaunay Triangulations [8], which
represent the dual graph of the Voronoi diagram for a discrete
point set. There are techniques which make use of a user input
as a threshold for the construction of the graph [9] and methods
like AUTOCLUST [10] which do not require any user input.
However, in contrary to our algorithm, these approaches do
not take the temporal aspect of time series into account.

Finally classic clustering algorithms like k-Means [11] or
DBSCAN [12] could be adapted to time series. Since the
initial design does not handle time-based data, the modification
is not simple. Regarding subsequences as vectors does not
reflect the impact of time accordingly. Developing a distance
function that includes the temporal aspect might be more
promising. However, this is again a complex problem as a
time series’ neighborhood has to be considered as well. Of
course, the naive approach of clustering the data at all time
points independently of each other should also be taken into
account. Obviously this approach lacks the temporal linkage,
but in addition the clustering algorithm’s hyperparameters have
to be determined for every timestamp. In all cases, an analysis
of cohesion post clustering has to be made. This would further
influence the time complexity in a negative way. The design
of our algorithm is targeted to time series, hence the cohesion
analysis is done on the fly during the determination of clusters.

IV. METHOD

Our algorithm is designed to detect stable over-time clusters.
That means, that the actual position of an object at one
timestamp is not as important as its surrounding. We accept a
certain deviation of an object to a cluster, if it moved with the
same cluster members over a certain time period. The sliding
window is optional. If not given we regard the whole time
series. Our method is based on an arbitrary distance function
which is normalized by the maximum distance d,,x and
minimum distance d,;, over all timestamps. This is necessary
to convert the distance measure to a similarity measure. For
two sequences 1,,7T; we define the distance d at time point
t; as follows.

d(Ta,Tb,tj) = diSt(Oa,j,Ob’j) (1)

ad(T,, 1,) = 0.61
ad(T,, t,) = 0.57
ad(T,, t,) = 0.46
ad(Ty, t,) = 0.51
ad(T,, t,) = 0.40

@
©00 0

ti

\

Fig. 3: A high opacity represents a high adaptability. The
central location and the low distances to its neighbors lead
to a high adaptability of a. In contrary, the high distance and
peripheral location of e causes a low adaptability for it.

Here, dist is an arbitrary distance function. Now the similarity
at timestamp ¢; of two time series can be calculated by

719 (- (B

We square the term to get overall smaller similarities with a

greater difference to each other. Later this becomes handy,
when determining the only parameter in our method. The
creation of clusters not only depends on the similarity of two
objects, but also on the factor how adaptive an object is. We
denote an object as being adaptive if it has a high similarity
to many objects. It is the average similarity of the regarded
object to every other object. Mathematically expressed, the
adaptability ad of a time series at the timestamp ¢; is defined
as

ad(T,, t;) = % >

sim(Ty, To, t5)
m
z€[1,m],x#a

with m describing the total number of objects at timestamp
t;.

In Figure 3 an illustration for the adaptability can be seen.
It is important to understand this concept in order to rate the
later influence of it to the resulting clustering.

The combination of the adaptability of an object and its
similarity to another object represents the connection factor
cf at time point t;:

cf (Ta, Ty, t;) = sim(Ty, Ty, t;) - ad(Ty, t;). 3)

Because of the adaptability of time series 7}, the connection
factor between two time series at a certain timestamp is not
symmetric. More precisely, in most cases it is cf(T,, Ty, t;) #
Cf(Tb, Ta7 f,j).

Finally, we introduce the temporal linkage by the aver-
age connection factor avg_cf, which then is incorporated
in the temporal connection factor temp_cf. The calculation
of avg_cf is introduced with a sliding window, but can be
adapted to the whole time series easily. This is particularly
useful when short time series are considered. First have a look
at the definition of avg_cf with a sliding window wj s:

1

To, T, wjs) = ———F
avg_cf(b, Wj,s) w1

> cf(Ta, Ty, ta).

i€w,iF#]

The final authenticated publication is available online at https://doi.org/10.1109/SSCI47803.2020.9308516 ‘

In case the application on the whole time series is wanted,
the size of the sliding window can be set to the number of
time points of the largest time series. As noted in the previous
section, points in time which are not present in the data set, do
not occur within the set of the sliding window. The temporal
connection factor tmp_cf is then defined as the average of cf
at time point ¢; and avg_cf. This leads to a higher influence
of cf at the regarded point in time.
Cf(Tav Tba t]) + G/Ug_Cf(Ta, Tba wj,s)

tmp_cf (T, Thst;) = 5 .

With the help of the temporal connection factor tmp_cf and a
parameter min_cf indicating the minimum connection factor
to build an edge between two data points, an undirected
graph Gy, = (V,E) can be created for every timestamp.
V' = Oy, denotes the set of nodes in the graph which are
given by the data points of all time series at time ¢;. The set
E C {{0a,5,0b,}|V04,j,00,; € Oy} contains all undirected
edges between pairs of nodes of the graph. Using the minimum
connection factor min_cf, an edge between o, ; and oy ; is
added to the graph whenever the temporal connection of o, ;
to 0y ; or the temporal connection of oy, ; to 0g4 ; is greater or
equal min_cf. So E is defined as

E = {{0q,j,00,;Htmp_cf(Ta, Ty, t;) > min_cf V. (4)
tmp_cf(Ty, Ta,t;) > min_cf}.

After the graph is built, the clusters can be extracted by
calculating the connected components! of it. Each component
represents one cluster, whereby single-element components are
marked as noise. Due to the usage of the introduced connection
factors non-convex cluster shapes can be detected.

Since the connection factor ¢f and the adaptability ad are
based on the similarity sim of the time series at a timestamp,
the threshold min_cf highly depends on the closeness of
objects belonging to the same cluster. The more compact the
groups of data points are the higher min_cf must be set.
Because of avg_cf the over-time stability of course has impact
on the parameter choice as well. The more stable the time
series are, the clearer the gradation of their connection factors,
since c¢f and avg_cf are converging.

The summarized algorithm can be seen in Algorithm 1. The
time complexity of the calculation of tmp_cf for all object
pairs is in O(n?) as it can be done by matrix multiplication and
all its components, like calculating the distance, are in O(n?).
Since tmp_cf must be calculated for all m timestamps, the
time complexity gets O(m-n?). The graph again can be created
in quadratic runtime and the connected components can even
be extracted in linear time. So the overall time complexity of
C(OTS)? is O(m-n?) with m being the number of timestamps
and n being the number of time series. Compared to the use
of k-Means, which is in O(n?) and would have to be applied
for every timestamp, which results in O(m - nz), too, this time
complexity is competitive.

1“A connected component of an undirected graph is a maximal set of nodes
such that each pair of nodes is connected by a path.” — https://www.sci.unich.
it/~francesc/teaching/network/components.html

Algorithm 1 C(OTS)?

1: procedure COTS(D, min_cf) >D={T1,..,Tmn}
2 clusters < list of empty dictionaries

3 V—{}LE+{}

4: for t; € {t1,..,t,} do
5
6

for all (04 ;,0,) € O do
caleulate tmp_cf(Ty, Ty, 1)
aforementioned formula tmp_cf
7 if tmp_cf(Ta, Ty, 1) >
(0a.is 0b;) not in E then
: E « EU{(04,i,00,i)}
9: end if

> use the

min_cf A

10 end for

11 G+ (V,E)

12: components —
extract_connected_components(G)

13: components < mark_noise(components) >
one-element sets denote noise

14: clusters < clusters U components

15: end for

16: return clusters

17: end procedure

As the temporal connection factor is based on the average
connection factor, which is zero when considering only one
timestamp, the approach can also be used for clusterings of
non-temporal data using only the connection factor. Examples
of resulting clusterings with C(OTS)? on non-temporal data
are illustrated in Figure 1.

V. EXPERIMENTS

Since our approach is a novelty in the field of time series
analysis, unfortunately there is no appropriate quality measure
which consists of the over-time stability as well as a shape-
based measure for clusters. Therefore, we evaluate the accu-
racy of C(OTS)? by visual inspection. For illustration reasons,
we generated three different data sets G, G2, G5 with time
series containing two dimensional features, and between four
and eight timestamps. Additionally, we consider two real world
data sets comprising financial figures from the annual financial
statements of publicly listed companies and a data set based
on macroeconomic features of countries.

All experiments are explained along with figures. For rea-
sons of illustrations the time series shown are never lasting
for more than eight years and do not hold a high number of
objects per timestamp. This does not indicate, that our method
is not capable of handling greater data sets with more points
in time. Quite in the contrary, especially the use of the sliding
window, allows us the application to longer sequences. The
amount of data points per timestamp changes the results, as
it is expectable of a clustering algorithm but the results are
still reasonable as can be seen in the experiments with the
generated data sets. The shown explanatory figures always
follow the same color code. Red indicates outliers, while other
colors indicate a cluster.

The final authenticated publication is available online at https://doi.org/10.1109/SSCI47803.2020.9308516

Whole clustering

year = 1 year = 2 year = 3 year = 4
10 g L 0k L e £ L L
4
= L a &
0.0 Lt s 2% iy e i s
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Zoomed into center
year = 1 year = 2 year = 3 year = 4
a)54 5 54 8 309 > 28 1 4 50 35 s
8 * - 3017 56°%° 55 3133 - ’s 4353 " 50
0.5 51 1 2 46 5 1410 &l
305655 2446 44 a3 31 15 5 s - G 1(6;
4 396 2 50 33 14
0.5 0.5 0.5 0.5

Fig. 4: Resulting clustering by C(OTS)? with min_cf = 0.35 and s = 3 on the generated data set G; with an overall low

over-time stability.

A. Synthetic Data

The first data set (G; is supposed to represent a very
unstable data set over time. It includes 60 time series and
four timestamps. In order to point out the impact of the
temporal behavior on the resulting clustering, five clusters
were positioned fix in the feature space for all timestamps.
For each point in time every time series was placed randomly
into one of the five clusters. The data set and C(OTS)?
clustering result can be seen in Figure 4. The first row
shows the resulting clustering. The second row illustrates the
excerpt from the upper clustering marked by a rectangle.
Red data points indicate noise while other colors represent
cluster belongings. Classic clustering algorithms which do not
include a temporal aspect would have found five clusters per
timestamp as there obviously are always five dense groups of
data points. C(OTS)?, however, marks most objects as noise
and finds only small clusters. This can be explained by the fact,
that only a few time series move with their cluster members
over time. Most of them behave individually and therefore do
not show a good team spirit. When considering the zoomed

year = 1 year = 2
0.8
6
¢ s &
0.6 5 57
B g% s 9
0.4 10,
128
lgz 1134
0.2 1
14 11 125
0.0
0.0 02 04 06 08 00 02 04 06 08

illustration in the second row, it is noticeable, that there are
points in the center of the group, which are marked as noise
or a separate cluster. This as well is caused by the over-time
stability, which is aimed to be optimized in C(OTS)?.

Note, that this experiment was executed with different
parameter settings, thus never a good clustering result could
be achieved, except of the case, when only one big cluster
results. This is a desired behavior, since regarding the over-
time stability, this data set can not be reasonably clustered.
An example of the same cluster formation but perfectly stable
time series can be seen in Figure 1. The result is the same for
one or multiple timestamps if the time series behave stable
over time.

The second data set GGo consists of 15 stable time series
and 4 timestamps, and intends to show an over-time clustering
that slightly differs from a clustering per time point without
temporal context. This effect can be caused by inserting time
series which move between two clusters or a merge of clusters
over time. In our case there is both, transitions as well as a
merge. The result is shown in Figure 5. Since the data points

year = 3 year = 4
,£ 2
7

4 6

52 1% b 4109 8

3 3
185 -
214 13
0.0 02 04 06 08 0.0 02 04 06 08

Fig. 5: Resulting clustering by C(OTS)? with min_cf = 0.15 and s = 3 on the artificially generated data set G5.

The final authenticated publication is available online at https://doi.org/10.1109/SSCI47803.2020.9308516

year = 1 year = 2
1.0
48
i s
< 514 i -
Z05 7381 3@PR
E ‘2”33'3 49 ﬁi%
1§, 26 T el 3 46
4
0.0 ‘
year = 5 year = 6
1.0
a4 47 =
o 44 40
pé()n L g
= . L
ot - i
0.0]

0.0 0.5

featurel

1.0 0.0 0.5

featurel

1.0

Fig. 6:

of the upper cluster are not very close to each other, min_cf
has to be chosen comparatively small.

In every time point there can be seen two up to three
groups of data points. C(OTS)? always identifies two clus-
ters, although at least in timestamp two, a classic clustering
algorithm without temporal component probably would have
found three clusters. This can be explained on the one hand
by the transitions of time series 1, 2 and 3 between the
two upper clusters, and on the other hand by the fact that
the aforementioned clusters merge at a later point in time.
The result of a subsequence clustering would probably look
different, too, as the exact course of the individual time series
differs a lot. The time series 1, 2 and 3 might for example be
recognized as noise, because their curves stick out with regard
to the other time series.

In the third data set G'3, 3 clusters for 8 timestamps and a
total of 50 time series were generated. Five sequences, namely
46 — 50, were inserted as outliers, by placing them randomly
in the feature space for every point in time. Figure 6 illustrates
the clustering result of C(OTS)? with min_cf = 0.32 and a
sliding window with size s = 3. Since the cluster members
of each cluster lie close to each other and the time series
are rather stable over time, all connection factors get higher
values, so that min_cf is chosen higher than for example in
Figure 5.

At first sight it is visible that C(OTS)? manages to detect all
outlier sequences as such. As in the last two timestamps time
series 50 is positioned near to the right cluster, the algorithm
assigns it to it. This behavior is reasonable, because both, the
similarity and the stability are given. In time point 3 on the
other hand, time series 50 is not assigned to the upper cluster
although it is located very near to the cluster’s members. That
is the effect of the considered over-time stability.

In the first four points in time C(OTS)? detects three

year = 3 year = 4

& 47

49

e " e

4R

w @ 2o 452
T) o890
%%??4 Z.Sg A3

46 i‘i
year = 7 year = 8
46
49
4

49 2
T

o 281 g

o s

o
%1 50
1#3 s
=27

47

0.0 0.5

featurel

1.0 0.0 0.5

featurel

1.0

Resulting clustering by C(OTS)? with min_cf = 0.32 and s = 3 on the artificially generated data set G.

clusters, which probably would also be recognized by common
clustering algorithms. From time point five there are only two
clusters, which is apparently a good choice especially for the
timestamps six to eight. Although in timestamp five there are
three obvious groups of time series, C(OTS)? merges the upper
ones in terms of the further course. Because of the sliding
window with width 3, the time points 4, 5 and 6 are considered
in order to make a clustering for time point 5. Since the
connection factors in timestamp 6 are generally higher than
in timestamp 4, as more objects lie in small distance to each
other, this timestamp has a higher impact on the clustering in
timestamp 5. Therefore, the merge already happens in time
point 5.

B. Real World Data

In order to test our method on real world data, we present
two data sets. After presenting a financial data set, we present
a macroeconomic data set and demonstrate how one could
discover knowledge with the help of our algorithm.

First, we chose a financial data set which we obtained from
EIKON [13], a product provided by Revinitiv (former provided
by Thomson Reuters). We selected 30 arbitrary companies
and two random features, namely SoftAssets and Pension
over a timespan of eight years (2007 to 2014). The latter
represents reserves for retirement plans of workers, while the
first represent assets which have no physical nature such as
patents, copyrights and trademarks. Unfortunately not every
feature is available for every company at every point in time,
therefore new companies may appear and other companies
may disappear over time. In Figure 7 one can see the results
of C(OTS)? applied with a sliding window of size five. Every
box represents a company, the label corresponds to the stock
symbol of the company. In 2009 one can observe a good
example for the time aspect of this clustering algorithm.

The final authenticated publication is available online at https://doi.org/10.1109/SSCI47803.2020.9308516

1.0

year = 2007

DRI TI%Ems BRKa

year = 2008

DRI Ti§Ems BRKa

UPS UTX UPS UTX
g GE GE
‘205 ¥ -
Dﬂj T IBM T IBM
MTLQU.PK MTLQU.PK
0.0 GM
year = 2011 year = 2012
10 DRUBEE geper, KRR e
UPS UTX UPS UTx
§ F I EGE
Z 0.5 T 5B
D? IBM BMEM
mrEdb . PK S
0.0
0.0 0.5 1.0 0.0 0.5 1.0
Soft Assets SoftAssets

year = 2009 year = 2010
DRI TI¥GE, 1S BRKa DRITEET _ousanica
uPs UTX UPS UTX
p GE o .
0
IBM IBM
oM
Pk MTLQU.PK
year = 2013 year = 2014
DRI
KRFPX BRI KRI®X FRENBA-©
uPs UTX UPS UTX
' o - 8
R IBM
MTLQU.PK
MTLQU.PK
0.0 0.5 1.0 0.0 0.5 1.0
Soft Assets Soft Assets

Fig. 7: Resulting clustering by C(OTS)? with min_cf = 0.26 and s = 5 on the financial data set.

Although the companies GM and MTLQU.PK are very close
to each other our method marks both as noise instead of
creating a new cluster for them. This has two main reasons,
first the adaptability of GM and MTLQU.PK is low in all
three years from 2008 to 2010, second the connection factor
of MTLQU.PK and GM in 2008 is very low and therefore
also lowers it in the temporal connection factor. Comparing
this to a clustering per timestamp, most cluster algorithms
would assign GM and MTLQU.PK to a new cluster in 2009.
It is also noticeable, that MTLQU.PK is detected as an outlier
in the year 2012, where it is actually very close to a small
agglomeration. In contrary the behavior of GM adapts to those
of F, GE and IBM from 2012 on. The small splitting of /IBM
in 2013 is not punished and the stability of this cluster is
preserved. On the other hand, the small splitting of UPS from
2007 to 2008 causes UPS being recognized as an outlier for
the rest of the time. Since the distance of UPS to its peers is
rising over time, this is a correct behavior of our algorithm.
Another interesting aspect is the handling of overall outliers.
In this excerpt AT&T, which is represented by the symbol T
is always far away from the other companies. Therefore it is
also always marked as noise. The second data set is obtained
from theglobaleconomy.com [14]. It contains different features
to countries over several years. We have chosen two figures
to illustrate our algorithm on this data set. Additionally, we
have chosen 2007 to be the beginning and 2012 to be the
end of the regarded time. Because of this time span and
the data basis, only 19 countries remained. The first figure
we chose, is the household consumption as percent of the
GDP and the second feature is the unemployment rate. The
results of our method can be seen in Figure 8. We chose
the given timespan, because of the financial crisis in 2008.
The first observation, we made is, that the number of outliers

increases from the year 2010. In conclusion that means, that
the unemployment rate and the household consumption as
percent of the GDP did not develop everywhere in the same
way after the crisis. It can also be said, that the effect of the
crisis is long-term, especially when inspecting numbers later
than 2012. While the unemployment rate in some countries
remained almost the same as before the crisis, some countries
had a bad development. For example Estonia (EST) and Spain
(ESP) had an increase of unemployment from 2009 on. While
the change of Estonia is still close to the majority in 2009,
Spain had a worse development and therefore is marked as an
outlier. In 2010, Estonia almost has the same unemployment
rate as Spain and both countries are far away from the majority
in the blue cluster. Finally, Estonia somehow reacted on the
crisis and could significantly lower its unemployment rate, so
that it came very close to those of the majority. Spain on
the contrary, had a rising unemployment rate until the last
regarded year. In econometrics, this could be a helpful and
quick analysis, which puts economic figures into the relation
of groups of other countries.

VI. CONCLUSION & FUTURE WORK

The clustering of time series data is a broad field of research.
Depending on the application there exist various approaches.
When considering multiple multivariate time series, often
whole sequences or parts of them are clustered using different
preprocessing. In this paper, we presented a novel approach
for clustering multivariate time series data. Our over-time clus-
tering algorithm is named C(OTS)? and produces clusterings
for every timestamp. One particularity of our approach is, that
the exact course of (parts of) time series not necessarily has
to resemble but the spatial location with regard to other time
series over time. Another advantage is, that C(OTS)? requires

The final authenticated publication is available online at https://doi.org/10.1109/SSCI47803.2020.9308516

Year = 2007 Year = 2008 Year = 2009

1.0 @
g Gl S N8t emB (}}ﬁA GMB
Q GEO EGY CE0
© DOM EGY | GEO DOM EGY DOM
=] ECGBR BCEBR BCUSBR
< 0.5 — FERRU ESP ¥ BST) ESE
< DNK FIN DNK DN
2] DZA
= GAB
2 DZA|gAB DZA A
T ENa GNQ

0.0 GNQ

Year = 2010 Year = 2011 Year = 2012

1.0 GNB
% GHA| GNB
2 GNBiA|GMB
s S § cifHA RGy
O DOM EGY GEO DOM EGY (GEO DONF GEO
- ECU| GBR GBR GBR
< 0.5 D st 5P o ESP Dot 12572
5 DNK DNK EST DN
n
=S Dz GAB DZA T DZA GAB
T 0.0 GNQ GNQ GNQ

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

Unemployment Rate

Unemployment Rate

Unemployment Rate

Fig. 8: Resulting clustering by C(OTS)? with min_cf = 0.34 and s = 3 on the globaleconomy data set.

only one parameter. The results on various data sets showed,
that the resulting clusters are stable over time, while satisfying
intuitive demands on clusters, like spatial closeness of objects
belonging to the same cluster. Since the calculation is based
on two components of which one is time-independent, our
algorithm can be used on non-temporal data for connection-
based clusterings, as well. Additionally, it can easily handle
missing data points. Because of a sliding window, the user
is furthermore able to control the temporal impact on the
clustering. We are keen to see a development in this field
of research. It is important to benchmark the results against
other algorithms with the same objective. However, regarding
our algorithm, improvements still can be done. Although, we
had no real difficulties to find good values for min_cf, a
determination method would be very helpful. We are also
aware of the optional second parameter s, the size of the
sliding window. However, we think, that this is depending on
the targeted analysis and should be determined by the domain
specialist. In addition, we believe that runtime optimization
could make the algorithm even faster, than it already is.
Finally, it would be interesting to develop a fuzzy derivative
of C(OTS)?, where data points can belong to more than one
cluster, as there are many applications where a hard clustering
is not possible or wanted.

VII. ACKNOWLEDGEMENT

This work was partly supported by the Jiirgen Manchot
Foundation, which funds the AI research group Decision-
making with the help of Artificial Intelligence at Heinrich
Heine University Duesseldorf.

REFERENCES

[1] Panos Kalnis, Nikos Mamoulis, and Spiridon Bakiras. On discovering
moving clusters in spatio-temporal data. In Claudia Bauzer Medeiros,

[2]

[3]

[4]

[5]

[6]

[7]
[8]
[9]

[10]

(11]
[12]

[13]
[14]

Max J. Egenhofer, and Elisa Bertino, editors, Advances in Spatial and
Temporal Databases, pages 364-381, 2005.

Martha Tatusch, Gerhard Klassen, Marcus Bravidor, and Stefan Conrad.
Show me your friends and i’ll tell you who you are. finding anomalous
time series by conspicuous cluster transitions. In Data Mining. AusDM
2019. Communications in Computer and Information Science, volume
1127, pages 91-103, 2019.

Anthony J. Bagnall, Hoang Anh Dau, Jason Lines, Michael Flynn, James
Large, Aaron Bostrom, Paul Southam, and Eamonn J. Keogh. The UEA
multivariate time series classification archive, 2018. CoRR, 2018.
Eamonn Keogh and Jessica Lin. Clustering of time-series subsequences
is meaningless: Implications for previous and future research. Knowl.
Inf. Syst., 8(2):154-177, August 2005.

Deepayan Chakrabarti, Ravi Kumar, and Andrew Tomkins. Evolutionary
clustering. In Proceedings of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’06,
page 554-560, New York, NY, USA, 2006. Association for Computing
Machinery.

Werner Stuetzle. Estimating the cluster tree of a density by analyzing
the minimal spanning tree of a sample. J. Classification, 20:025-047,
05 2003.

J. Hartigan and Surya Mohanty. The runt test for multimodality. Journal
of Classification, 9(1):63-70, 1992.

Xiankun Yang and Weihong Cui. A novel spatial clustering algorithm
based on delaunay triangulation. JSEA, 3:141-149, 01 2010.

G. Papari and N. Petkov. Algorithm that mimics human perceptual
grouping of dot patterns. In Proceedings of the First International
Conference on Brain, Vision, and Artificial Intelligence, BVAI’0S, page
497-506, Berlin, Heidelberg, 2005. Springer-Verlag.

Vladimir Estivill-Castro and Ickjai Lee. Autoclust: Automatic clustering
via boundary extraction for mining massive point-data sets. In In
Proceedings of the 5th International Conference on Geocomputation,
pages 23-25, 2000.

S. Lloyd. Least squares quantization in pcm. [EEE Transactions on
Information Theory, 28(2):129-137, 1982.

Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu. A
density-based algorithm for discovering clusters a density-based algo-
rithm for discovering clusters in large spatial databases with noise.
In Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining, pages 226231, 1996.

Thomson Reuters. Eikon financial analysis and trading software.
Global economy, world economy.

The final authenticated publication is available online at https://doi.org/10.1109/SSCI47803.2020.9308516

