Publikationen:

Autor: Jahr:

2020

  ·A. Askinadze:
From Collecting, Integrating, and Visualizing Student Data to Predicting Student Dropout and Performance

PDF

2019

  ·A. Askinadze, S. Conrad:
Predicting Student Dropout In Higher Education Based on Previous Exam Results
Proceedings of the 12th International Conference on Educational Data Mining (EDM)

PDF
  ·A. Askinadze, M. Liebeck, S. Conrad:
BoB: A Bag of eBook Click Behavior Based Grade Prediction Approach
Companion Proceedings of the 9th International Conference on Learning Analytics & Knowledge (LAK’19)

PDF
  ·A. Askinadze, M. Liebeck, S. Conrad:
Using Venn, Sankey, and UpSet Diagrams to Visualize Students’ Study Progress Based on Exam Combinations
Companion Proceedings of the 9th International Conference on Learning Analytics & Knowledge (LAK’19)

PDF

2018

  ·A. Askinadze, M. Liebeck, S. Conrad:
Predicting Student Test Performance based on Time Series Data of eBook Reader Behavior Using the Cluster-Distance Space Transformation
5th ICCE workshop on Learning Analytics (LA) & Joint Activity on predicting student performance

PDF
  ·A. Askinadze, S. Conrad:
Development of an Educational Dashboard for the Integration of German State Universities’ Data
Proceedings of the 11th International Conference on Educational Data Mining (EDM)

PDF
  ·A. Askinadze, S. Conrad:
Respecting Data Privacy in Educational Data Mining: An Approach to the Transparent Handling of Student Data and Dealing with the Resulting Missing Value Problem
27th IEEE International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE-2018)

 

2017

  ·P. Hirmer, T. Waizenegger, G. Falazi, M. Abdo, Y. Volga, A. Askinadze, M. Liebeck, S. Conrad, T. Hildebrandt, C. Indiono, S. Rinderle-Ma, M. Grimmer, M. Kricke, E. Peukert:
The First Data Science Challenge at BTW 2017
Datenbank-Spektrum

PDF
  ·A. Askinadze, S. Conrad:
A Web Service Architecture for Tracking and Analyzing Data from Distributed E-Learning Environments
2017 IEEE 26th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE)

 
  ·A. Askinadze, S. Conrad:
Application of the Dynamic Time Warping Distance for the Student Drop-out Prediction on Time Series Data
Proceedings of the 10th International conference on Educational Data Mining (EDM)

 
  ·A. Askinadze:
Fake war crime image detection by reverse image search
Datenbanksysteme für Business, Technologie und Web (BTW 2017), Studierendenprogramm, 06.-10.03.2017 in Stuttgart

PDF

2016

  ·M. Liebeck, P. Modaresi, A. Askinadze, S. Conrad:
Pisco: A Computational Approach to Predict Personality Types from Java Source Code
Notebook Papers of FIRE 2016

PDF
  ·A. Askinadze:
Anwendung der Regressions-SVM zur Vorhersage studentischer Leistungen
Proceedings of the 28th GI-Workshop Grundlagen von Datenbanken, Nörten Hardenberg, Germany, May 24-27, 2016.

PDF

2015

  ·A. Askinadze:
Vergleich von Distanzen und Kernel für Klassifikatoren zur Optimierung der Annotation von Bildern
Datenbanksysteme für Business, Technologie und Web (BTW 2015), Workshopband, 02.-03.03.2015 in Hamburg

PDF

Heinrich Heine Universität

Datenbanken und Informationssysteme

Lehrstuhlinhaber

Prof. Dr. Stefan Conrad


Universitätsstr. 1
40225 Düsseldorf
Gebäude: 25.12
Etage/Raum: 02.24
Tel.: +49 211 81-14088

Sekretariat

Lisa Lorenz



Universitätsstr. 1
40225 Düsseldorf
Gebäude: 25.12
Etage/Raum: 02.22
Tel.: +49 211 81-11312
Verantwortlich für den Inhalt:  E-Mail senden Datenbanken & Informationssysteme